Farewell[0] : 논리화학 Compilation
(다음 글들)
하고싶은 잡설은 많으나, 앞에 잡설을 적으면 여러분들이 뒤로가기를 누를까봐 본론부터 적습니다.
칼럼 및 자료 모음집니다. 제 글이 정말 많아서 뭘 봐야할질 모를텐데 제가 생각하기에 중요한 글들만 모았습니다.
*오르비 접는다는거 아님.. 막문단 참고
-> 케미로직. 2021학년도 대비 수능용으로 작성 시작, 2022수능 이후 마무리.
나름 한 시대를 풍미한 책입니다. 약 1년정도 인강 포함 화1판 0티어 책이었음.. 근데 이 때를 아는 분들은 지금 최소 4수생이라 좀 거리가 머네요.
케미로직 핫픽스와 케미로직으로 구성되어 있습니다.
케미로직은 양적관계와 내분만 보시고, 케미로직 핫픽스의 경우 기출문제풀이만 골라서 보시면 됩니다.
케미로직의 중화와 케미로직 동위원소는 약간 낡았으니 다른분들 글이나 인강이 더 좋을겁니다.
지금봐도 전체적으로 잘 풀어놓긴 했다만, 좀 못푸는데? 싶은거가 몇개 있을텐데, 무려 3년전 풀이라는 점이 있고요,
제 마음대로 만든 자습서이기에 중요하다 싶은 문제는 여러번에 걸쳐 발전된 풀이로 풉니다. 이거 개못풀었다 싶으면 뒤에 찾아보면 다른 풀이 있어요.
추가적으로 내분은 공부를 해도 좋다고 생각은 합니다만, 이제 내분이 유리한 문제를 내지 않는 추세이니 메인으로 삼지는 않는게 좋습니다.
여기 있는 내용이 제 화학 풀이 기반의 전체입니다. 저는 선형적(일차함수적) 해석을 정말 좋아하고(저는 ”선형성“을 선형대수학의 선형성 의미로 사용합니다. 혼동 ㄴ), 선형함수의 합성인, 유리함수로 확장했을때 증감의 경향성이 깨지지 않음을 이용해서 문항을 많이 해결하기에, 이 책에서 그런 관점들을 배워갈 수 있어요. 하지만 이 책의 내용은 최근에 사용하는 풀이의 절반밖에 안됩니다. 즉 이걸 기반으로 쌓아올린게 있습니다.
-> 2023학년도 수능 대비 EBS 화학1 컨텐츠 선별 및 해설
2023학년도 수능 대비 EBS가 "그 해에만" 유독 퀄리티가 좋았기에 열심히 만든 컨텐츠입니다. 지금도 풀 가치가 있고요.. 2년전 듄이면 이제 공부하지도 않을테니, 사실상 "논리화학이 해설 쓴 N제" 처럼 푸시면 됩니다.
-> 유리함수 그래프의 예측 방법
2020년 (21수능 대비)
케미로직에 있는 내용을 풀어쓴 글입니다. 준 자료가 유리함수이기만 하면 그래프의 전체적 증감을 쉽게 추론 가능합니다.
유리함수의 수학적 성질에 의존하기 때문에, 수학적 직관이 필요합니다.
https://orbi.kr/00038852512 (1편)
https://orbi.kr/00038905343 (2편)
https://orbi.kr/00038970180 (3편)
https://orbi.kr/00039443756 (4편)
-> 논리화학의 최단경로 (가능한 모든 잡 테크닉을 써서 최대한 빨리 풀기)
2021년 9월(22수능 대비)
지금 제가 봤을때 최단경로가 아닌 풀이들도 몇 개 있긴 하다만(가중치 내분 안 쓴 문제가 있어요), 다 이론상 암산으로 풀 수 있을 정도로 풀이를 최대한 압축한 칼럼입니다. 최상위권으로 도약하고 싶은 분들은 꼼꼼하게 읽어보는걸 추천합니다.
->논리화학 대치 어둠의 슈퍼로지컬밀도찢기칼럼 1탄[추첨 이벤트]
2022학년도 수능 직전
여러분들의 문해력을 테스트 해 보겠습니다. 밀도 관련해서 나온 칼럼인데 추첨이벤트?입니다.
-> 비레식의 빠른 풀이(비레식의 합차 등)를 통한 221118 풀이
2022학년도 수능 해설강의 모두 올라오고 아무도 안 썼길래 올린 칼럼. 비례식 합차 풀이 유행의 시작입니다. 공식적인 곳에 업로드 된건 최초가 맞는거로 아는데, 다만 몇몇 과외쌤이나 xx현강 선생님이 사용했다는 제보가 있으니 제가 최초로 "가르친건" 아닙니다. 저도 이 수능문제 연구하다가 찾아낸 풀이는 아니고.. 예전부터 쓰던 사람은 썼지만 쓰는 사람은 중요성을 모르던 내용이라고 할 수 있겠네요.
-> 가중치 내분
유리함수의 세 점이 주어졌을때의 계산법 일반화 입니다. 엄밀히는 눈풀화1님이 최초로 발견하신 내용입니다. 좀 쉽게 풀어쓰는 방법을 찾아서 올림. 논리화학 마지막 매드무비.
사실 올해 과외를 하다가, 같은 원리이지만 더 좋은 방법을 찾았으나 저는 풀이 추가로 안 올리기로 했으니 여러분이 찾아보시는게...
-> 제목이 긴 칼럼 - 대충 '모순 증명의 대수적 동치'애 대해 서술한 매우 어려운 칼럼.
여러분들이 현강이나 높은 수준 인강에서 많은 배울 "귀류 없는 모순 증명"이 사실 귀류와 다를게 없고, 계산과 다를게 없음을 보여주는 칼럼입니다. 사실 이 칼럼을 쓴 이후, 이 관점과 "애매한 상위권에게 내분이 좋지 않은 이유"를 설명하고, 그 대체 방안 여러가지를 소개하는 칼럼을 쓰고 싶었으나 아쉽게도 제가 현생이 많이 바빠지기 시작했습니다...
-> 마지막 칼럼들
제 최근 과외에서 하는 풀이를 엿볼 수 있습니다(내년수능 대비 과외는 졸업이슈로 안합니다).
마지막 칼럼이라 해놓고 칼럼 여러게 썼는데 논리화학 이새끼 맨날 뜬다한다 이렇게 생각하실수 있다만 실제로 저 칼럼 이후로 "새로운 풀이법"들은 발견을 N개 했지만 과외생들한테만 알려주고 하나도 안 올렸어요. 그런 의미에서 마지막 칼럼이 맞습니다. 저때부터 현타가 좀 와서 지금 접게됨
EXIT-TICKET 002 https://orbi.kr/00057809142
SEAFROG 001 https://orbi.kr/00058020082
SEAFROG 002 https://orbi.kr/00058197091
PRELUDE https://orbi.kr/00063054414
INTERLUDE https://orbi.kr/00064277614
-> 제가 주요문항 해설 쓴 모의고사 : 시네로 및 그포 주관
참고하세요.
->과탐 실모의 근본적 한계
유일하게 여기에 넣은 공부법 및 기타 칼럼입니다. 여러분이 실모 공부할때 가져야할 제가 생각하는 태도?를 적었어요.
아래는 잡설입니다.
이제는 케미로직도 고대 유물이 된 것 같습니다. 뭐 제가 이거 처음 인터넷에 올렸다 이렇게 말해도 다 아는 당연한 상식 아니냐 이런 얘기도 꽤 들을 정도기도 하고요.
아무튼 논리화학 풀이가 그래서 뭔데? 하는 분들이 많은 것 같기도 합니다. 최근에 칼럼을 올린적도 없고 이전 칼럼들을 어느정도 안다고 전제하고 글을 쓰다보니 점점 여러분들간의 거리가 멀어지는 것 같기도 하고요.
아무튼, 칼럼모음집입니다. 그리고 이 글이 제 화학1 문제풀이 칼럼의 끝입니다. 다만 쓰고싶은 찐찐막칼럼 딱 하나가 있는데, 24수능 화1에서 고인물들이 어떻게 푸는지, 진짜 전부 암산으로 풀 수 있는지 간략하게 설명만 하는 칼럼을 쓸 것 같습니다. 왜 고인물들은 여러분들과 보법이 다른지 설명을 해 보고싶었어요.
또한 찐찐으로 화학을 접었어요. 있던 팀도 나왔고요. 3.5년정도 화학 붙잡고 있으니, 제가 컴수리 복전도 하는데 학교 수업 따라가기도 벅차더라고요. 이에 화1 칼럼을 올릴 일은 없을 것 같고, 컨텐츠 제작도 접었습니다. 모종의 이유로 다시 톡톡 건드릴 일이 생길수는 있겠지만 이마저도 제 전공과 관련되는거 아니면 안 할 생각입니다. 오랜만에 코딩 좀 흥미 붙이고 있는데, 이래서 내가 컴공왔지 싶을정도로 꽤 재밌더라고요.
또 접는다는게 오르비 ㅍ 이런거 다 접는다는건 아니고.. 6, 9, 수능은 한때 제가 제일 좋아했던게 화학이니 틱틱보고 코멘트정도는 쓸 수 있겠죠. 그러니깐 논화 이쉑 또 말만 하고 안접었네 이러지 마시고... 근데 올해까지 했던것 처럼 인생에서 우선순위가 높은 일은 전혀 안될 것 같고, 화1 칼럼은 위에서 말한 찐찍막 말고는 안 올릴듯 합니다(사실 그 찐찍막 글도 단순 코멘트에 가까워요). 그런 의미에서 이 글 제목이 Farewell입니다. 감사했습니다.
0 XDK (+10)
-
10
-
빠른 N수를 위해서 사회문화 개념강의 들을려고 하는데 왤케 개강이안되는건데
-
자네말이 맞네 그렇다면 서울대에 뜻이 있어 가는 애들은 무슨 뜻이 있어서 메디컬 다...
-
서울개싫다진짜 0
난촌놈이맞나봄
-
진학사랑 고속이랑 서강대 점수 2점 정도 차이 나는데 왜 이런거에요?
-
오랜만에 화작푸니까 개꿀잼이네 이거 공부는 하기 싫고 커뮤 지박령짓 하고 있는데...
-
반수 관련 질문하기도 좋고 애니 취향 비슷한분들도 많아서 좋은 듯
-
반갑습니다. 14
-
진짜 공부열심히해야지... ㅠㅠ
-
타 메디컬에 비해 2년 절약되는게 넘사벽 메리트 2010학년도까지 4년제였는데
-
서울대 물리 일반고 지균 기준 과목(단위수) 일본어(3) 정보(2) 통사(3)...
-
저 어지간한거 다 풀었는데 설맞이랑 지인선이 젤 좋았음요
-
얘 내 프로필에 없는데 안읽은 상태로 차단하는 법은 없는지 알려주셈
-
실시간 개피곤함 0
하
-
“尹 잘한다” 24.2%… 12·3 비상계엄 전 수준 회복 17
긍정평가 4.8%P 상승… “잘못한다” 73.9% 국회의 탄핵소추안 가결로 직무가...
-
여긴 병원이잔아...
-
컨설팅 맡기는거면 따로 분석안해도 괜찬음요?
-
올해 많이들 가나요??
-
이분 뭐죠 8
무섭네요
-
넓네요 수업들으러 이동하다가 다리빠개질듯뇨
-
워낙 수요가 적은터라 대부분 서울대 학부 출신자들을 경쟁시켜서 교수 임용해도 티오가...
-
다군이 변수가 많다고 해서 가군 안정지원하면서 낙지 기준 846 으로 쓰려는데...
-
쌈무나보고가라 4
-
저 밑에 글 땜에 고3 화작 처음 봤는데 왤케 빡셈 3
고1 2랑은 확 다른 거 같네... 뭐이리 미어넣었지
-
안녕하세요 오르비 수학강사 이대은입니다. 오늘은 칼럼이 아니라 수요조사를 위해 글을...
-
기균 2장하고 안정 하나 쓸건데 어디 써야 될까요 기균이 안될 시에는 안정이...
-
3스나 박고 3떨
-
들어가기전 마지막으로 힘을 받을 수 있을까요
-
만백 컷 상관없이 그냥 문제가 화1이 생1보다 할만하면 이주하고싶음 노베라...
-
언 확 영어 사문 한지 입니다 97 84 2 42 47
-
현역 언미화지 2406 31244 2409 21243 2411 42142 재수...
-
하 ㅅㅂ 3
수학 29번 실수안한 ㄱㄴ 세계로 고속 돌려봤더니 고경제 연초뜨네ㅔㅔㅔㅔㅔ 인생아
-
고전시가 강좌 2
김승리 듣고 있는데 고전시가 강좌는 없으셔서 그런데 김동욱 강민철 김상훈 선생님...
-
[민족고대]25학번 톡방에 초대합니다!(25학번 최다인원)(종합 최다인원)[고려대] 2
안녕하세요, 고려대학교 재삭생 대표 커뮤니티 고파스의 새내기 맞이단입니다!!...
-
나형사탐문과러->1년만에 기하 생지 올1등급 질받 11
21수능 22,23,24수능 미응시 2506 2509 25수능
-
시립대 변표 나왔는데 13
시립대 변표 나왔는데 불변인가요 물변인가요?
-
이제 몇시간 뒤면 1차 나오는데 경제학과 빠지신 분 계신가요 ㅠㅠ
-
원서를 처음 써보는 거라 좀 도와주세요.. 예를 들어서 15명 뽑는 학과에서 제가...
-
아 근데 아직도 라인 안 잡으신 분있나요? 12월 14일 업뎃판입니다
-
재수학원 알아보고 잇긴 합니다 그런데 혹시라도 추합에 될수도 있을까요? 답변 감사합니다
-
커뮤에서만큼은 나도 시미켄 반박 안받음
-
사문이랑 지구 둘 다 고인물들 엄청 많이 들어올까요? 사문 지구 정시 의대 삼수...
-
서울대 입학하신거 아니면 웬만하면 학문의 길 따윈 포기하세요 서울대도 못가는...
-
그냥 궁금하네요 인식이 어떤지 솔직히 24학번분들은 별 생각 없으실것같은데 그 위...
-
중고등학생 대상 우정, 추억 관련 초간단 설문조사입니다! 수능끝난 수험생분들도 참여...
-
수능선배 후기 0
**수능선배 재원생 후기 이벤트로 작성합니다 안녕하세요 올해 수능선배 ㄷㅊ점에서...
-
“좋은 아침이다, 3학년 1반 친구들아! 오늘도 산뜻한 조회로 하루의 문을 활짝...
-
올해 내내 화작만 하다가 처음 언매로 돌릴까 고민중인 뉴비인데요. 그냥 깔끔하게...
-
교보문고 출발 5
피램 찾으러 고고씽
-
세종대 합격생을 위한 노크선배 꿀팁 [세종대 25][장학금정보] 0
대학커뮤니티 노크에서 선발한 세종대 선배가 오르비에 있는 예비 세종대생, 세종대...
수고하셨습니다
감사합니다!
가는김에 다꼬리레어 좀 다시주세요
무친련
않이 선생님들 오르비 아예 접는다곤 안함...
논리화학이라는 이름은 영원히 기억되실 겁니다!! 그동안 수고하셨습니다!!
화1러의 한줄기 빛...
지금까지 감사했습니다!
21수능 대비 케미로직 본게 예전같은데 그 세대가 벌써 5수 나이네요 ㅠㅠ
화학계의 큰 별이 지는구나..
보법이 다른 논협지의 팀과외는 유명했지
친구 뭘 좀 아는걸 보니 프로출신이구만
Rip 수고하셨습니다
보법차이를 도저히 못좁히고 화1 탈출했지만 논화 무공비급 세트는 정말 잘봤었습니다 선생님...
눈풀화 복귀하니까 논화가 떠나네... 현생 응원합니다