[박수칠] 분산을 (편차)²의 평균으로 계산하는 이유
오늘은 어떤 주제로 글을 쓸까 고민하다가 예전에 봤던
조관 선생님의 포스팅 ( http://orbi.kr/0008006413 )
과 관련된 내용을 써보기로 했습니다.
평균, 분산, 표준편차를 열심히 공부한 학생이라면
한 번 쯤은 해봤을 고민이죠.
——————————————————————
왜 분산은 (편차)²의 평균으로 정의될까?
(편차의 절댓값)의 평균으로 정의하면 안되나?
——————————————————————
(변량)-(평균)으로 정의되는 편차는 변량이 평균보다 큰지, 작은지
그리고 평균으로부터 얼마나 떨어져 있는지를 나타내는 지표입니다.
그러다 보니 산포도 계산에 편차를 쓰는 것은 지극히 당연한 일이죠.
하지만 편차의 합은 0이기 때문에 편차의 평균 또한 0입니다.
이 때문에 편차를 제곱해서 0 이상의 값으로 바꾼 다음
평균을 계산하게 되고, 이를 분산으로 정의합니다.
여기서 편차의 제곱 대신,
편차의 절댓값을 쓰면 안될까요?
이를 알아보기 위해
세 변량 a, b, c (단, a < b < c)의 대푯값을 x로 두고
(편차)²의 평균과 (편차의 절댓값)의 평균을 조사해봅시다.
(1) (편차)²의 평균은 다음과 같습니다.
그리고 분자가 x에 대한 이차식임에 주목해서
완전제곱꼴로 변형하면 다음과 같습니다.
따라서 (편차)²의 평균은 일 때
즉, 대푯값 x가 a, b, c의 평균일 때 최소가 됩니다.
(2) (편차의 절댓값)의 평균은 다음과 같습니다.
그리고 분자가 일차식의 절댓값의 합임에 주목해서
분자로 만든 함수의 그래프를 그리면 다음과 같습니다.
따라서 (편차의 절댓값)의 평균은 x=b일 때,
즉 대푯값 x가 a, b, c의 중앙값일 때 최소가 됩니다.
대푯값 x가 평균일 때 (편차)²의 평균이 최소,
대푯값 x가 중앙값일 때 (편차의 절댓값)의 평균이 최소인 것은
n개 의 변량 에 대해서도 마찬가지입니다.
(3) (편차)²의 평균
따라서 (편차)²의 평균은 일 때,
즉 대푯값 x가 의 평균일 때 최소가 됩니다.
(4) (편차의 절댓값)의 평균
i) n이 홀수일 때
일 때 최소
ii) n이 짝수일 때
x가 구간 에 속할 때 최소
i), ii)로부터
(편차의 절댓값)의 평균은 또는 일 때
즉, 대푯값 x가 의 중앙값일 때 최소가 된다고 할 수 있습니다.
따라서 (편차)²의 평균은 대푯값이 평균일 때 최소이므로
평균 에 대한 분산을
으로 정의하는 것이 자연스럽다는 것을 알 수 있습니다.
또한 변량 의 중앙값이 일 때
(편차의 절댓값)의 평균
를 '평균편차'라고 하며, 임금 근로자 연봉 분포처럼
변량의 분포가 한쪽으로 치우친 경우에 산포도로 많이 사용합니다.
그리고 대푯값/산포도로 평균/분산(또는 표준편차)을 사용하면
중앙값/평균편차의 조합보다 공식의 변형이 자유롭다는 장점이 있습니다.
덕분에 분산을 { (변량)²의 평균 } - (평균)²으로 계산할 수도 있고,
미분/적분이 상대적으로 쉽죠.
추가적인 장점이 또 있는데
그건 제가 이해를 못해서...
[참고 자료] 기초통계학의 숨은 원리 이해하기 (김권현 저)
[알림] 박수칠 수학 미적분1-적분법 단원 부교재가 업로드 되었습니다.
본교재 문제에 수능/모평/학평 기출 54문제가 추가되었습니다.
다음에 작업할 단원은 미적분2-적분법입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
무지성 인서울? 0
개인적인 생각인데 무지성으로 대학을 인서울하는 게 뭐가 중요한지 모르겠음 지방에...
-
그럼 핸드폰 아예 없다 이번에 첨사는거면 자급제는 안되는거죠? 4
유심이 업ㅅ는데..
-
아침에 일어나자마자 글읽으면 눈에서 글자가 튕겨져나감 똑같은 구간을 계속 반복해서...
-
반수 해보신분들 4
학교 걸어두면 수능날 1교시 타종 직전에 오는 압박감이 많이 없어지나요? 현역...
-
진학사 질문 3
누가봐도 1,2지망은 택도 없이 불합일거 같은데 3지망은 점수 많이 남기고 붙는거면 무슨 심리인가요
-
부탁이에여
-
생존자확인 4
-
하루에 1시간만 하니까 인강듣고나면 외울 시간이 없는데..
-
엄 42%까지 올라갔다는데 언급이 많이 없네요
-
기차지나간당 2
부지런행
-
16은 이쁜 색상이 많아서 좋던데.. 사진 잘안찍으면 16이 나음?
-
뭉 0
-
탱 0
-
이 0
-
월 0
-
드 0
-
이거 왜케 어려워요 ㅋㅋㅋ
-
반갑꼬리 0
반갑나나
-
햄 1
햄
-
버 0
버
-
거 0
-
성 0
.....
-
공 0
....
-
엄 0
...
-
준 0
..
-
식 1
.
-
작수3이고 동네학원에서 실전개념 같은거 배우긴함 혼자 기출풀고 n제 실모 풀고..
-
음......... 뭐지 은근 어렵네 그래도 먹을만하네요
-
이번에 일물2 중간기말 둘다 0점받고 c쁠받음 ㅋㅌㅋㅋㅋ 내가 교수였음 바로 d나 f줬다
-
2025 수능이 쉬워진 이유 (Ft. 수능 킬러유형) 2
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
고2되는데무섭네요...
-
욕먹고탈퇴하셨네 나한텐goat이였는데 어쩌다가
-
결과론적이지만 지구과학 69수능 만년3따리였고 수능백분위74받을바엔 24사탐 치는게...
-
ㅇㅂㄱ 5
-
잡니다 2
ㅂㅂ
-
인강판에서 또 잘생긴 사람 있음?
-
대학 떨구면 1
군대 신청하고 수능공부하다가 입대하고 수능봐야겠다 알빠노 대학 더 업그레이드하면 그만이야 시발아
-
좀 고민을 해 봤는데 26수능은 군대이슈로 공부시간이 부족할 것 같음 25때는...
-
아무도 안읽어줘..
-
정시로 공대갈거같고 원하는과이기도함... 근데 유치하긴 하지만 과잠입고 자랑스럽게...
-
좀 더 늘어나야함
-
나 인증 본사람 댓좀 12
대학가서 여자한테 수시 원서넣듯이 고백하면 6관왕 가능? 급함
-
내일 할 일을 부여하여 오비르에 돌아오도록 하기
-
나 진짜 타고난 멸치라서 살찌우고 싶은데 뼈 자체가 너무 얇아보여서 의욕이...
-
씹덕프사할 때마다 4명은 빠지던데ㅋㅋ
-
한 2조정도 버는게 목표임
-
여미새 재밌음 3
그냥 보이는 모든 사람한테 들이대면 반응이 재밌음
-
호날두 애미 3
ㅇㅇㅈ
-
개소리들은 캡하고 싶음 ㅇㅇ..
ㅋㅋㅋㅋ 오르비스티커 너무 귀여워여
그러니까요... 진짜 예쁘게 잘나왔어요.
그 외에도 확률변수에 대한 적률 적률생성함수 중심적률등과도 관련이 있지 않을까 생각됩니다.
물량공급님 외계어도 쓸 줄 아셨군요.
좀 배워야겠다...
적률생성함수라는 마법의 도구가 있더라구요
찾아보니 학부 확통 과목에서 배웠던 함수네요.
지금 보니 뭔 얘긴지 하나도 모르겠음 ㅎㅎ
최소점이 평균값이기 때문에 제곱을 쓴다는 건 결과론적인 해석이 아닐까요?
제곱을 써야만 하는 수학적 필연성이랄지, 이런게 있으면 좋을 것 같은데요
예를 들어, 정규분포 함수의 식에는 제곱을 이용한 표준편차가 들어가죠. 만약 표준편차를 다르게 정의했을 때 같은 식을 유도할 수 있는지, 그렇지 않다면 왜 그럴 수밖에 없는지 같은 것들 말입니다
본문의 내용은 결과론적인 해석이라기 보다
{ (변량-평균)²의 합 } / (변량 개수)를 분산으로 정의한 이유의
일부라 할 수 있습니다.
근본적인 이유로 들어가자면
{ (변량-대푯값)²의 합 } / (변량 개수)를 최소로 하는 대푯값이 평균이고,
이 평균을 모집단과 표본의 대푯값으로 쓰면 모평균의 가장 합리적인 추정치로
표본평균이 똭~ 나타납니다.
이 부분을 설명하려면 '최대우도추정법'이라는 걸 알아야 하는데
여기서 굳이 설명할 필요도 없고, 저도 잘 모르거든요 ^^;
그래서 '고등학교 수준에서 이 정도 설명이면 충분하겠다'
싶은 선에서 끝냈습니다.
이런 것 보면 아무 호기심 없이 그랬구나...그렇구나...하고 받아들이는 제 자신이 다행스럽네요. 문과여서 여태 통계문제 풀면서 저런 증명이나 원리를 몰라서 틀린 적도 없고 개이득
몰라도 되는 건 이과도 마찬가지입니다 ^^
그냥 궁금해할 수험생들을 위해 정리한거예요~
loss funtion?
손실함수라...
6시그마 교육받으면서 배웠던 건데
갑자기 왜 나올까요? ㅎㅎ
경영쪽 아니고 경제학부 통계시간에 교수님께 배운건데..
추정량과 모수의 차이를 나타내는 함수를 loss function 이라 하지않나요,,? 이거 배우면서 글에 나온 내용도 같이 알게되고 했던 기억이 나서요~
아~ 용어만 같고, 정의가 다른가 봅니다.
제가 배웠던 것은 품질관리쪽에서 손실 비용 계산에 쓰는 함수거든요.
이유식님이 얘기하신 손실함수까지는 공부를 못해봤어요 ^^
저도 맛보기정도만 한 비루한 학부생입니다 ㅠ
댓글 달아주셔서 감사합니다.
헐 신기하네요 이거 궁금했었는데 감사해요ㅋㅋㅋ 오 신기하다 맨날 하필 왜 제곱일까....이랬었는데
제가 기다렸던 반응이 드디어 나왔군요.
감사합니다 ㅎㅎ
절대값을 왜 안쓸까 했는데 쓰는데가 있기도 하군요
그러게나 말이에요.
저도 참고자료 보면서 처음 알았어요~
조만간 책나오면 살건데 박수칠님 글 너무 도움됩니다 모든글 지우지 말아주세요ㅠ
안지울테니 걱정마세요~ ^^