[칼럼] 기하 뉴비들을 위한 안내서 Vol.1 (Feat. 베르테르 19번)
부제 - 문제를 "다각도로" 바라보셔야 합니다
안녕하세요, 의대왔다고 입니다.
오늘 칼럼은 기하 문제를 다각도로 바라보고 해결하는 방법에 대해 다뤄볼까 합니다.
기하라는 과목 자체가 선택자 수가 적기도 하고, 그럼에도 기하라는 과목을 선택하시는 분들은 이미 기하를 잘 하시는 분들이 많기 때문에 이 칼럼이 얼마나 많은 분들께 도움이 될 지 잘은 모르겠습니다.
그러나, 혹여나 기하를 그저 "재능의 영역"으로 생각하고 막연히 기피하고 계시거나, 미적에 자신이 없어 선택과목을 변경하시고 싶으신 분들이 약간의 힌트를 얻어가실 수 있으리라고 생각하고, 오늘 칼럼은 그런 분들께 초점을 맞춰 진행해보도록 하겠습니다. 혹시나 나는 미적분 선택자지만, 과외에서 기하도 가르칠 필요가 있다라거나 가르치고 싶다(시급을 올려!) 하시는 분들도 읽어보시면 도움이 되실 것 같습니다. 그닥 딥한 내용은 나오지 않으니(학문 자체가 딥하지 못합니다) 편하게 읽어주시면 될 것 같습니다.
저희가 난이도가 높은 미적 문제를 풀 때는
1. 문제 발문을 몇 개의 친숙한 덩어리로 쪼갠 후
2. 각 덩어리에서 얻어내야 할 단서들을 얻어내서
3. 이를 조합해 나감으로써 해결합니다.
기하의 공간도형 문제들도 위와 비슷한 방식으로 해결해 나갈 수 있습니다.
다만, 문제의 발문을 "쪼개는" 대신, 주어진 입체를 다각도에서 관찰함으로써 저희에게 친숙한 상황들을 관찰하고 이로부터 필요한 정보들을 얻어냅니다. 이 내용을 조금 더 자세히 설명하기 위해 아래 문제를 분석해보도록 하겠습니다.
다음 문제는 기하를 공부해 보셨더라면 한번쯤은 들어보셨을 그 악명 높은 "베르테르 77제"의 19번입니다.
(시작부터 장난질이냐 라는 생각이 드실 수 있지만, 문제를 차근차근 여러 각도에서 바라보면 해당 문제가 그닥 빡빡한 문제는 아니라는 것에 동의하실 수 있으실 겁니다.)
위 문제를 끝까지 읽었을 때, 다른 조건은 그래도 머리에 좀 상황이 그려지는 방면, 정말로 물음표만 띄우는 발문이 하나 있을 것입니다. 바로 아래의 발문이죠.
해당 상황을 주어진 그림에 그대로 표시해보면 아래와 같습니다.
이걸 그리고 난 다음에 드는 생각은... "대체 어디가 A'T가 최대가 되는 지점일까" 라는 것입니다.
이 조건을 분석하기가 까다로운 이유는, 선분 A'B'과 점 T가 움직이는 원주가 한 평면 위에 올라가 있지 않기 때문입니다. 가령, 선분 A'B'과 점 T의 자취가 한 평면 위에 있었다면, A'T기 최대가 되는 점 T의 위치는 A', B', T가 한 직선 위에 있을 때가 될 것입니다.
그럼 이제 여기서 멘붕이 옵니다. 저 원주를 A'B'이라는 선을 포함하는 평면상에 정사영시켜서 타원을 만들고... 그게 일직선이 되는... 근데 높이는 또 고려해야 하는데... 머리가 아프죠.
근데 위 문제 상황을 아래와 같이 다른 각도에서 관찰하면 어떨까요?
위 상황을 평면 beta를 밑면으로 두고 관찰한 것입니다. 이 때, 점 A'을 평면 beta 위에 정사영시킨 점을 점 H라고 하면, 위 문제 상황을 아래와 같이 관찰할 수 있습니다.
이러면 H B' T가 한 직선 위에 있을 때 A'T의 길이가 최대가 됨을 직관적으로 쉽게 알 수 있게 됩니다.
그럼 아래와 같이 (나) 조건을 쉽게 분석할 수 있습니다. (밥아저씨가 된 기분이네요)
이제 구하라는 것을 구해서 답을 내보도록 합시다. 구하라는 것은 아래와 같습니다.
(어떠한 도형의 다른 평면으로의 정사영의 넓이를 구하는 방법도 크게 두 가지가 존재합니다. 이는 나중에 다른 칼럼에서 찾아뵙겠습니다.)
이 때, 주어진 문제 상황을 평면 alpha와 beta가 모두 일직선으로 보이게 되는 각도에서 관찰하면, 아래와 같은 모습이 보일 것입니다.
위 그림을 통해 AB와 PQ의 길이가 같고 평행하며, AB와 B'B가 수직함을 이용하여 원래 삼각형 ABB'의 넓이와, 삼각형 ABB'을 포함한 평면과 평면 alpha의 이면각을 알 수 있습니다.
따라서, 구하는 넓이 S는 아래와 같습니다.
풀이의 사고 과정을 차근차근 따라오셨다면, 이해가 가지 않는 부분이 딱히 있었을 것 같진 않습니다. 다만 물음표는 생길 수 있는데, 가령 아래와 같은 질문이 생길 수 있죠.
"야 너는 저걸 어떻게 평면 beta를 깔고 볼 생각을 했냐? 역시 기하는 재능이야."
위 생각을 하게 된 과정은 다음과 같습니다.
1. 저희는 원주 위를 도는 임의의 벡터를 다른 평면에 정사영시킨 벡터를 가지고 최대/최소를 논한 적이 단 한번도 없습니다. (못할걸요 애초에)
2. 그럼 A'B'을 원주가 있는 평면 위로 정사영 시켜봐야겠다는 생각이 자연스럽게 따라옵니다. 이 때 A' B'은 모두 고정점이기 때문에 정사영 시켰을 때 기존 문제 상황 대비 동점이 더 늘어나지도 않으며, 저희에게 "친숙한" 그 문제상황이 나타나기 때문에 옳은 방향을 잡았다는 것을 느낄 수 있습니다.
해당 문제의 풀이를 한 페이지에 정리하면 다음과 같습니다.
뭔가 상당히 복잡한 사고 과정을 거쳐간 것 같지만, 막상 저희가 한 일은 주어진 문제 상황을 다각도로 바라보는 것 그 이상 그 이하도 아니었습니다. 풀이 과정도 막상 계산하고 쓸 건 별 게 없죠. 이게 미적과 비교했을 때 기하의 엄청난 장점이라고 생각합니다.
다만, 주어진 상황을 3D 모델링 마냥 머리에서 빙글빙글 돌려가면서 관찰하는 것이 부담된다면, 권하기 힘든 과목인 것 같습니다. 장단이 명확하죠.
(위 풀이과정을 따라오시면서 요리보고 조리보고 알 수 없는 둘리 둘리 하셨다면 기하런은 지양하시는 게 좋습니다. 뭐 당연한 얘기를 이러고 길게 써 놨냐 하신다면 표점 vs 안정 1을 두고 잘 저울질하셔서 현명한 선택을 하시길 바랍니다.)
사실 이제까지 기하 문제의 해설은 그림 1개, 약간의 계산, 답으로 이루어진 것이 가장 아름다운 해설이라고 생각해 왔었습니다. 그러다 문득 그 아름다움에 남들이 공감할 수 없다면, 과연 그것이 진정으로 아름다운 것일까 라는 생각이 들었고, 논리 과정을 자세히 풀어서 써 본 칼럼을 작성하게 되었습니다.
기하를 사람들이 막연히 어려워하는 이유 중 하나가, 잘하는 사람들이 풀어둔 풀이에서 "도통 어떤 흐름으로 사고가 진행되었는지를 읽어낼 수 없다"인 것 같습니다. 그래서 앞으로도 종종 위와 같은 칼럼들로 찾아뵐 예정입니다.
"기스퍼거 저 놈의 머릿속은 도대체 어떻게 생겨먹었는가"에 대한 궁금증이 있으셨던 분들은 한 번씩 들러주시면 감사할 것 같습니다.
미적, 공통 관련 칼럼도 하고 싶은 이야깃거리가 생기면 잘 정리해서 들고 와보도록 하겠습니다.
긴 글 읽어주셔서 감사드립니다.
(좋아요와 팔로우는 사랑입니다. 이 사람이 더 많은 칼럼을 쓸 원동력이 됩니다!)
0 XDK (+1,000)
-
1,000
-
작년 초에 교육청 문제들을 갈래별로 편집해 봤는데 수요가 꽤 있어서 올해는 좀 더...
-
현역 사탐런 5
25학년도 6,9,수능 물1 화1 둘다 집에서 풀었을 때 시간 남으면서 1등급...
-
찐따의 장점 0
그런건 없다
-
합격여부에 “불합격”이라고만 써있으면 예비도 없이 불합격이라는 뜻인가요? 아니면...
-
텝스 결론 5
2월 9일에 응시 안하면 1학기에 영어수강신청 불가 개인적으로 응시하고 나중에 들으먼 댐
-
찐따의 장점 2
...
-
홍대 자취 0
최근 3개년기준 6~80번대까지 추합도는 학과인데 오늘 50번대 예비받고 긱사는...
-
물1 비역학 퍼즐 싫어서 물2까지 간사람인데 과탐 수능1 받은 능지면 할만할까요?...
-
맞팔로우 하실분 2
아무나
-
도표를 공부해도 틀릴거면 차라리 정법해서 암기로 때우는게 더 좋지 않나요..? 이게...
-
다군 1명 뽑는데 예비2입니다.
-
자기 할 거나 잘하자 외대 내려치기 한다고 자기들 미래가 달라질까
-
눈 뜨기 싫다
-
[후략]
-
국 수 영 탐 다 과외 중(탐구는 정법 사문 세사 국수영 과외생들 풀이법 추가로...
-
정답 / 정답률 추가함; 수학 기출 번호로 찾는 사이트 4
https://pastkice.kr/findbynumber.php 기존...
-
저는 100문제 정도 풀면 그 중 60문제를 계산 실수로 틀리는 사람입니다. 제가...
-
ㄹㅇ 개많음ㅋㅋ
-
가입하니까 온갖 의대생들이 보내던데 나 뭐 어케 잡을 수는 있는건가
-
스카이 ㄹㅈㄷ 5
딘시보니 스가이 였네
-
강민철 범작가 0
강기분까지는 다 할 생각이고, 새기분으로 넘어갈까용 아니면 국일만을 해볼까요?...
-
헤헤
-
하루에 14시간씩 박혀서 공부밖에 안하는데 어케이김 간절함의 차이도 다르고 정시<<...
-
계약학과 붙으면 2
첨에 등록금 얼마냄? 추합붙으면 돈 넣어야되는거아님?
-
[단독] 조선업계도 ‘주 52시간 근무 특례’ 요청…“미래 경쟁력 지원해 달라” 1
송언석 국회 기재위원장 주최 간담회서 ‘첨단선박기술 R&D 인력’ 대상 특례 요구...
-
홍대 자전 최초합 인증합니다 1지망이라 등록할 예정입니다. 고2때 수능 43243...
-
저 원랜 아파트 단톡에서 구했는데 이젠 자취해서 어떻게 구해야할 지 모르겠음 아파트 광고?
-
"딥시크에 '中 국영통신사로 사용자 정보 전송' 코드 숨겨져" 1
美 사이버보안업체 주장…"코드 해독 결과 감춰진 부분 발견" (서울=연합뉴스)...
-
수시는 음 그렇군 하고 말앗는데 학교애들 설대 정시 합격증 우르르 보이니까 한없이...
-
신규 원전 1기 축소 수정안 제시에도 야당 몽니에 수립 난망 [발목 잡힌 전기본] 1
[데일리안 = 임은석 기자] 전력수급기본계획(전기본)이 사상 초유의 지연 사태를...
-
한능검 1급 맞으면 수능 한국사 걱정은 평생 안 해도 됨? 2
한국사 50~47 진동 중인데 이제 공부 안해도 되겠지?
-
노베기준 비율로 따지면 공부량 몇배정도 차이남? 현역기준.
-
한수원 '20조 슬로베니아 원전' 수주 포기…유럽서 사실상 철수 1
[서울경제] 한국수력원자력이 스웨덴에 이어 슬로베니아 신규 원전 건설 사업...
-
딮기가 우승했다는 가정하에
-
인강민철 0
호수마다 난이도 차이 있음? 난이도 차이 어느정도임?
-
예비 고3입니다. 고2때는 항상 국어 백분위 98 이상이었고 3학년 모의고사 기출...
-
세종대 합격생을 위한 노크선배 꿀팁 [세종대 25][밥집] 0
대학커뮤니티 노크에서 선발한 세종대 선배가 오르비에 있는 예비 세종대생, 세종대...
-
밥 먹으면서 보기 힘든 거 말고는 아쉬울 게 없었다
-
정법 선거랑 부부부모자녀관계는 시간내서 강의 한번 더봐야할듯요 너무빡세네.. 영어도...
-
커뮤에는 왤케 많이 보이지 현실은 ㅈㄴ 드문데
-
개념서 유제 정도만 풀어주면 됨 좀만 해도 성적 쑥쑥 올라서 학부모님이 좋아하심
-
설대 텝스 6
영어 수능 이후로 한 번도 안 봤는데 대충 워드마스터라도 외워가야함? 토익처럼 문제...
-
걍 기출문제집이지 뭘 마더텅 풀다 갈아타고 번장에서 구해풀고 .. 뭐 또 퀄리티좋은...
-
홍대 경영 예비 4
543번인데 될까요??? 작년에 추합돈거 보니까 565%던데
-
이번에 지구과학에서 생윤으로 돌리려는데 생윤이 처음이라 커리를 어떻게 해야할지...
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다 대가리를 존1나 쎄게 쳐서 제...
-
어느정도길래 난리임
-
전 2-3등급->1등급 만드는거는 잘할 자신있는데 4-5는 어디부터 해야할지 감이 잘 안옴…
-
현재 현우진 뉴런 수12 미적 듣는중이고 현우진 풀커리탈 예정인데 3월부터 개강하는...
-
정시파이터 폐지 0
사법고시 막차 탄사람이 사법고시 사라지는걸 눈으로 볼 때의 느낌과 비슷하지 않을까...
기하칼럼은 좋아요
기하에 관심은 없지만 동정의 의미로 좋아요
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아... 슬프지만 감사합니다... :)
최고로 멋있어지는 방법!!
그저 시호님의 발자취를 걷고 있을 뿐입니다...
ㅋㅋㅋㅋ 우리 기하 많이 사랑해 주세요... 감사합니다!
기하해야되나
현역이라 수능 기하치면 공통미적확통기하를 다 해야돼요ㅠㅠ
그럼 이참에 논술로...!
현역 화이팅입니다 ㅠㅠ 할 게 넘 많죠
읽어주셔서 감사합니다!
정성이 들어간 글 잘 읽었습니다 :)
기하 1등급으로서 너무 강추합니다 아주 좋아요
ㅎㅎ 기하가 잘 맞으시는 분들은 정말 편하게 1등급 받아가실 수 있다고 생각합니다
이것도 아주 큰 도움이 되죠 ㅎㅎ 다음에 관련 내용으로 칼럼을 작성해볼 예정입니다
좋아해주셔서 감사합니다 ㅎㅎ!
미적러지만 개추
그저 "범부"일뿐...
방금정독했는데벽느껴져요
어질어질합니다
ㅎㅎ 열심히 써 봤습니다 감사합니다