컴공 일기266
n이 충분히 크고 적당한 λ가 존재해서 np = λ 라면, 이항분포 B(n,p)를 포아송 분포 POI(λ)로 근사시킬 수 있습니다.
사실 이항분포는 개별 시행마다 성공 확률과 실패 확률을 세세하게 따지기 때문에, 확률을 계산함에 있어서 복잡합니다.
특히 n값이 커지면 커질수록 그렇지요.
포아송 분포의 장점은, 이항분포처럼 개별 시행마다의 확률을 따지지 않고, 단위시간 / 구간 당 평균적으로 몇 번을 성공했는지만 따져도 적확한 확률을 구할 수 있다는 것에 있습니다. 또한, 이항 분포는 시행횟수 n과 확률 p를 매번 조정하면서 확률을 계산해야 하지만, 포아송 분포의 경우는 모수(λ)를 적절하게만 변환시켜 주어도 단번에 값을 구할 수 있죠.
예를 들어, 어떤 일을 독립시행한 횟수가 100번이고 어떤 일이 일어날 확률 P = 0.01이라고 가정합시다.
또 그 일이 2번 성공할 확률을 구한다고 가정해보죠.
그러면 X~B(100, 0.01)이고 시행은 독립적이므로 100C2 * (0.01)^2 * (0.99)^98
이 됩니다. 확률을 구하기는 했지만, 이 값이 대략적으로 얼마 즈음인지 단번에 파악하기가 쉽지 않죠.
하지만 시행횟수가 충분히 크므로 포아송 분포를 적용할 수 있는데, 이런 경우 조금 더 쉽게 구할 수 있습니다.
POI(λ) = x! / e^-λ * (λ)^x (x : 성공한 횟수, λ : 모수)
여기서 λ = np = 100 * 0.01 = 1
POI(1) = 2! / e^-1
e^-1 ~= 0.3679 정도 되므로 확률이 대략 0.1839 정도라는 사실을 알 수 있습니다.
포아송 분포의 확률질량함수식이 비교적 이항분포 확률질량함수식보다 계산하기 용이하다는 장점도 있지만,
이 분포의 가장 큰 강점은 유연성에 있습니다. λ를 자유롭게 잡을 수 있거든요. 하루 평균, 일주일 평균,
1년 평균… 원하는 값을 조정해 줄 수 있기 때문에 개별 시행에 집착하는 이항 분포보다는 조금 더 현실적인
분포라고도 볼 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
질문은 언제나 환영입니다 여러분
-
반박시 곤장 10대
-
시드니
-
걍 미적할란다 1
확통해도 다 맞출 자신이 없군아
-
글에있는 조건이랑 특별한훈련♡까지 겸해주신댔어요 첫수업이 기대돼요!
-
4% 문제 보여주면서 이거 맞추면 1등급 이러던데 ㅅㅂ 저거 맞추고 미적 15점...
-
얼마이므ㅡ
-
그게 나야 바 둠바 두비두밥~ ^^
-
맞팔구. 0
.
-
난 변할 수 없는 건가봐
-
21학년도 물2화1러인데 그땐 물2가 2등급 블랭크였거든요? (고인것도 있지만...
-
26년도에 모집을 하기는하는건지뭔지 모르겠네요. 26년도 모집안하면 이때...
-
집이 숭실대 주변이라 관독다니면서 목시 단과들을 예정인데 주변 관독 ㅊㅊ좀...
-
1편 링크...
-
주4일 하면 힘듦? 설거지랑 재료 준비라는데
-
개노잼이네 1
-
설에 내려가서 친구들 보고 좀 쉬다올까 생각하다가도 친구들 대학합격소식이랑...
-
강기원 쌤 복테 6
어싸는 아직 어려워서 못 푼 문제들은 고민하다가 1주일 안에는 못 풀어가서...
-
알바하고 싶은데 1
신입생이라 대학 시간표를 몰라서 신청을 못하겠네 목금토일만 신청해볼까
-
유명한 학술동아리이기도 하고, 매년 7-8월에 대전에서 모여서 4박 5일 정도...
-
현역 07 노베입니다.. 완전 노베이스라 수학부터 시작하려는데 50일수학 강의를...
-
입문n제 2권이 5만원 하는 비정상적인 가격을 보니까 좋다고하는거만 풀려고하는데...
-
ㅋㅋㅋㅋ
-
노베이스 치고 이 정도면 난 훌륭하다고 생각함
-
애초에 3d가 있는데 2d를 왜 좋아하는지도 이해 안되고
-
내 진짜 실력은 44444가 아닐까
-
아니... 인간 무게중심 지지대 중 한군데를 그것도 정확히 FM자세로 킥한다는게 실화?!?
-
과외하는 스터디룸 임대해서 거기서 수업하는데 거기에 가져다놓으면 안되겠지? 부정탈라나
-
추가합격하고싶어
-
노는것도 술먹는것도 클럽가는것도 너무 행복한데 재수걱정에 마음은 불안하고......
-
시대재종 수리논술 강사로 가셨네 예전에 엔제 재밌게 풀었는데 갑자기 벌점받고...
-
타율 잘나옴 특히 요붕이들은 진심으로 믿고 있었어 사랑해~~
-
진짜 ㅈ됨. 나 어쩌냐 대학 못 가겠다
-
학교 문제에 이거 그대로 나왔는데 숫자 보고 무슨 문제집인지 아시는 분 댓글...
-
ㅈ댈빤햇다
-
화1하다 화2가면 인지부조화오고 기억이 뒤섞일거같은데 PT일정인 경우 V와 n이...
-
밥먹지말걸 17
개후회되네
-
아는 선배가(작수 사문 100점) 윤성훈은 너무 지엽적인 내용 많이 알려줘서 윤성훈...
-
3모때 2아니면 높은3이 목표입니다
-
사진이..굿노트 전송이 안댐.. 그래프를 슥슥 잘 그려보면 +-...
-
아니 왜지우냐 0
내가 말을 너무 심하게했나
-
아직 메디컬은 레전드긴하네
-
장영진t는 다 좋은데 강의 텐션이 많이 떨어지고 올해 컨텐츠가 좀 부족한 느낌?...
-
도형못해서 기하 못함 케이스분류못해서 확통 못함 강 제 미 적
-
반짝이는 가로등 보고 내가 우와아 왤케 예뻐 이거 봐 예쁘지 이러면 응.. 사진...
-
기하못하고 미적못하는 통통이가..
-
국어 인강 질문 0
대성이랑 이투스 있는데 올오카 독서랑 훈련도감 이렇게 듣는게 나을까요? 아니면...
-
내일 잇올 상담받으러 가는데 떨리네용
-
아니근데 만19세가 15
영화랑 술 담배는 1월1일부터 뚫리는데 왜 주식만안됨
-
수국김 김덩욱 고전시가 반응스위치온 일취클 체크메이트 문학 독서 이렇게 들을건데...
첫번째 댓글의 주인공이 되어보세요.