수학에서 실전개념이라는게 뭐라고 생각함?
답지풀이말고 천재적인 풀이같은거 있잔아
굳이 n축같은 교육과정 외 스킬 안 가져오고도 그래프로 푼다거나...그런거
실전개념? 뭐라그럴까 이런걸
예를들어서 저 밑에 문제 조건을 보고 y=sin(k/6)선대칭이구나 바로 알아내는...그런거
이런거는 어디서 배우는거임? 이런게 재능차이인가 기출 풀어도 저런 능력은 안키워질 것 같음
저런 직관은 어떻게 키우는걸까
저런거에 집착 안하고 정석풀이 위주로 공부하는 편이었는데 3등급 벽이 안뚫려서 고민이 많아짐
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개똥 누구도 관심없을 글 싸지르고 늦게 지우면 겁나 현타옴 그건 그렇고 잘자요
-
자꾸 뭘 같이 할 사람을 찾음; 수영, 러닝, 눈싸움 심지어 운동장에서 경도까지..
-
아님망고
-
1. Isogonal conjugate. 삼각형 ABC와 점 P가 있다....
-
외힙 듣는 분 0
이거 조음 ㄱㄱ
-
안녕하세요 2
24 국어 98점 질문 받습니다.
-
필자는 이상치임 ㅇㅇ..
-
복 많을 얼굴이에요
-
이번주 금욜 호주가고 이주뒤에 베트남가는데……. 진짜 취소하고싶다
-
사랑이란 뭘까 7
추사랑아님
-
이민에 대해서 6
오르비언들은 아마 사회생활 경력이 별로 없어서 경제감각이 떨어지지만,어려서 한국에서...
-
나이가 몇인데 수동적 고딩티 못벗음
-
자중하겠습니다 4
절로 ㄱㄱ혓.
-
고인물 파티구만
-
슈냥님 오르비하면서 이번에 처음 알았음 눈팅까지 2년차인데
-
엉엉
-
내 말 안 들을 거잖아!!!!!
-
다시 잠이 안옴.....
-
반!카이! 3
하아아아
-
네 2
그렇다네요
-
슈냥형 2
쪽지주세요
-
포기합니다 2
암산테스트 70+ 처음으로 포기 선언합니다... 시벌 너무 야마돌아서 못해먹겟음...
-
왜 저한테 귀엽고 깜찍한 새해 축하 쪽지 안 보내주신거죠!!ㅂㄷㅂㄷ
-
이상입니다
-
예비 7인데
-
헤테로토피아, 장수생분들은 아마 오랜만에 들어본 주제라고 생각합니다. 2년전쯤...
-
요즘 몇몇 학습질문글은 15
그냥 답변안하고 지나치게 되는 듯 전에는 보이면 다 해줬는데 이젠 작성자 가려서 답변하는 듯
-
연대생이나가신다
-
대상혁
-
쪽지라... 11
누구랑 쪽지를 하루에 5번은 하는 거 같은데
-
나 열심히 후원햇는데..
-
님들 새해복많 17
먼가 님들 다 오르비에만 있는 AI 같아서 새해 덕담할 생각을 못하고 잇엇음 새해복많
-
레드와인 마시고 취해서 울어서 팀장님이 킅 온거 후회하니..? 하신거에 본인도...
-
기억으로 쓰는거라 이상할 수 잇음, 알아서 걸러들으삼1. Inverse 중심이 O인...
-
급함
-
이거 ㄹㅇ 담원뽕 차게함
-
피우진 개짜치네 2
너무 억지전개다 그냥 이번화에 김신이 백의를 철저히 도구로 이용하는 장면 보여주고...
-
님들 그거 앎? 3
저는 아는데 님들한테 알려주기 싫음
-
착용완료.
-
거의다 자나보네 21
오
-
한번만 더 이기면 민폐는 아니었잖아 시전 시우가 민폐였다 똥냄새 여기까지 난다 시전...
-
자러감 4
밤 새려고했는데 늙어서 못새겠음 4시간반 자러감 굿밤
-
흠 8
-
진짜금붕어와지능테스트해도 질자신있음…
-
글 쓰는 중 6
이라는 글 쓰는 중
-
강제 배송이고, 많이 안 받으면 울어버릴거임. 다들 대박나셈뇨 고고
-
싫어요
-
공스타 맞팔 구 0
-
.
-
공부 시작해볼까 0
이런 삶도 그만 살고 싶어
한 문제 한 문제를 소중히 여겨야댐
찌찌뽕
근데 문제 하나 무작정 처다본다고 그런게 떠오르지는 않음 나는....
이제 저 문제에서 선대칭 아이디어를 알앗으니 비슷한 조건이 나왓을 때 이 문제를 공상하듯이 풀 수 잇으면 정말 빠르게 실력상승이 가능함미다
저건 실전개념보단 짬바임
저런거 기출 풀다보면 보입니다
단 재능 있는 사람은 개념만 해도 보여요
재능 없으면 기출 5회독은 해야 그제서야 보이고요
그냥 4점짜리 벅벅 회독 돌리면 감이 오는걸까용...? 어떤 생각을 해야하는건지 궁금해용... 수분감 이런거 들어봤는데 걍 현우짐풀이 외우기 느낌이라 손절햇어요
다른 사람의 풀이에는 사고과정이 안 들어있어요. 물론 해설지가 아니라 강의같은 경우에는 그 사고과정을 어느정도 설명해주지만, 그럼에도 본인 스스로 어떻게 사고해서 이 문제가 풀린건지 정리할 필요가 있습니다.
문제를 열심히 시도를 해보고 해설을 봐야하는 이유도 이때문입니다. 그냥 보면 사고과정을 파악하기가 쉽지 않거든요. 어느정도 부딪혀보고 해설을 보면 여기서 왜 그 생각을 햇어야 햇는지를 파악하기가 수월해지죠. (또 왜 내가 못 풀엇는지 등등..)
강사가 가르칠 법한, 혹은 널리 퍼져 있는 실전개념과 공식들을 우선 숙지하고 있어야 함. n제나 기출을 풀 때 우선은 푸는 것 자체에 집중하되, 그 풀이가 덜 다듬어져 있다면 혼자서 끙끙대보는 거임. 여기서 적용 가능한 개념이나 공식이 없을까? 필요하다면 해설지나 강사의 풀이과정을 참고해서라도 이런 풀이를 많이 접해야 함. 이런 식으로 문제를 충분히(충분히의 기준은 사람의 재능에 따라 갈림) 접하다 보면 새로운 문제를 볼 때 기시감이나, 말로 표현 못할 직감이 들 때가 있음. 이 직감은 문제를 많이 풀수록 더 자주, 더 뚜렷하게 나타남. 이게 쌓이고 쌓여서 풀이도 다듬어지고, 빨라지는 거
+번외로, 위의 문제는 선대칭을 꺼낼 필요 없이 그냥 y=sinx와 y=sin(kπ/6)의 교점의 개수로 생각해도 무방함. 어차피 교점의 위치를 알 필요 없이 개수만 구해도 된다면, 구간에 관계없이 sinx=sin(kπ/6)일 때 교점이 생기므로 굳이 그래프를 희한하게 안 그려도 됨. 당연히 이런 아이디어도 다양한 문제를 많이, 아주 많이 풀다 보면 자연스레 떠오름