(짧은 칼럼) 1/x을 적분하면 무조건 lnlxl+C라 할 수 없는 이유
lnlx+3l의 부정적분도 비슷한 예시가 될 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
방학때 동남아에 한달정도 잇엇는데 거기 형들하고 친해져서 장난치다가 왁스? 무스?를...
-
제가 예비고3인데 국어공부를 어떻게 해야할지 도통 모르겠어서 질문합니다. 글 읽고...
-
이대 미팅 7
해보신 분 있나요 ..?..? 아님 친구분들 중에 이화여대 친구 있으신 분들.....
-
경제 하나만 더 맞히고 지균썼으면 인문 갔네 나왜재수함
-
의대 대신에 5
서울대 백수계약학과 만들어 주면 감 아무것도 안하고 평생 월 300지급(현재가치로)...
-
지금 순번 40번대 인데 다음주 수업까지 빠질까요..? 이번주 수업은 물건너간거같구요
-
25수능 언미물화 33214이고 화학만 세계지리로 바꾸고 반수 생각하고 있습니다....
-
국수영탐탐 백분위로 말씀드릴게요 24수능 72 85 2 52 61 25수능 95...
-
아
-
현돌 커리 따라가려고 하는데 내신으오 생윤을 했었다만 기억 날라간 부분도 좀 있는거...
-
고민이 되네요....
-
엄마 몰래 정시 원서 접수할 건데요 진학사 공통원서 >> 추가 전화번호(1)이 엄마...
-
너무 몰라서 죄송합니다. 외대 fianace ai 여기 4칸떠서 물어봤는데...
-
제목이 곧 내용
-
영단어장 ㅊㅊ 0
작수 영어 1이었는데 올해는 학원 안 가고 혼자 공부할려구요 영단어장 ㅊㅊ해주세요
-
첫번째꺼를 쓰는게 맞ㅇ는건가요? 칸수는 두번째거가 더 높아요ㅠㅠ
-
;;;;
-
군필들에게 질문 20
처음 머리 밀고 나서 자기 모습 어땠음??
-
원서 0
일단 쓰고 봤는데 방금 진학사 보니까 둘 다 4칸으로 떨어져 있네여... ㅈ된...
-
장학금 없나...?
-
옯스타 마지막 홍보 10
korea_minji 맞팔 구해봐요…
-
사탐런의 딜레마 4
작년에 사탐런한 공대 지망 친구가 제게 한 말이 있습니다 과탐으로 1 맞고 있는...
-
잘까 0
하암
-
761넣었어요 3
ㅇㄴ 6 떨어지면 진짜 저 너무 서러울 거 같아요 붙여주세요ㅠㅠㅠㅠ
-
이것만큼 기분 더러운게 없음
-
이거 어케 해결하지..
-
700이고 학과 간보고 있는데 영문 쓰면 진학사 기준 3등일 것 같습니다 장학금 나올까뇨?
-
저는 작년에 8
냥대 문과에 떨어진 사실이 있습니다. 심지어 낮과였답니다.
-
칸수 직전 상승 0
지금까지 3칸 떠서 쳐다도 안봤던 상향 대학이 갑자기 5칸이 떠버렸는데 폭 날...
-
치대 수련도 의대처럼 많이 빡센가요? 요즘 여자분들은 수련 많이 하려는 분위기라는...
-
직장이 무슨사유로 맘에안들었던걸까 그냥 이직하면안되나
-
에휴다노
-
싱싱해지고 싶구나
-
꾹꾹 참고 또 일기만 쓰고 있어 난 내 이름 맑음
-
슈퍼문 난이도 1
어려운거 맞죠? 심신이원론은 잘만 풀리는데 얘는 보자마자 숨이 턱턱 막히네;;
-
심심하군뇨 질문해주새요 14
없으면망고...
-
다군 6칸 0
고속 찐초에 39명 뽑고 쭉 6칸인데 이거 무조건 되는 거 맞죠..?
-
강기분 언매 1
이제 고2!! 겨울방학에 강기분 언매로 미리 공부해볼까 하는데 미친 선택인가요?...
-
점공 등록 완료 2
굿
-
n수생입니다.메디컬 목표인데 생1지1 선택했었고 매번 생1이 3~4등급...
-
기대가 되는구만! T1 ㅎㅇㅌ~!
-
고민상담 1
객관적이고 T인사람 가감없이 말해줄 사람 고민상담 좀 연애임
-
06년생 현역입니다. 중학생때부터 학교에서 7등 정도로 우수하게 나갔고, 별 다른...
-
근데 거의 다 전과 관련..
-
크아악
-
2024년 방귀 팝니다 12
똥 좋아하던 모 고닉이랑 동시에 뀌었어요 밀봉 120퍼
-
무물보 0
네 질문받습니다
-
오늘 한 3시간 본듯뇨
-
하위권대 다군 4칸이면 희망 없는거겠죠??.. 안전빵으로 가군에 전북대 6칸...
-
경희대 자전가면 전자공이나 반도체공 갈듯합니다.
C1이랑 C2랑 안 같아도 되는 건가요??
네네 다를 수 있습니다.
한 함수 적분할 때 구간마다 적분상수가 다를수도 있는 거니까 그런 거조?
근데 개념이나 해설강의들보면 항상 ln절댓값+C1 하던데 오개념인가요?
"한 함수를 적분할 때 구간마다 적분상수가 다를 수도 있다"라고 생각하시면
좀 위험할 수 있습니다.
기본적으로 피적분 함수가 '연속'일 경우
적분이 된 함수는 자동적으로 미분가능하게 되어
적분 상수가 동일해집니다. (cf. 도함수 연속->원함수 미분 가능성 보장)
이 점을 염두해주시고
'피적분 함수의 정의역이 불연속으로 끊겨 있는 상태에서 (ex. 1/x)
적분할 때 구간에 따라 적분상수가 다를수도 있다.'
이렇게 생각하시는게 좋을 것 같습니다.
말씀해주신 개념/해설강의 같은 경우에는
앞뒤 맥락과 설명하는 상황을 추가적으로 파악해야하기에
확답을 완전하게 드리기는 어려울 것 같습니다.
현우진 선생님 킬링캠프 모의고사 28번에 나온 소재네요ㅎㅎ
저도 고려안하고 틀렸던…
아 그런가요? 킬링캠프에 이 소재가 이미 나왔는 줄은 몰랐네요ㅋㅋㅋ
이거 소재로 한 문제 사설에서 봤어요
그렇군요! 알려주셔서 감사합니다! ㅎㅎ
고등학교 수학에서 불연속함수 적분 안시키지 않나요??
가우스 함수같은 불연속함수 자체를 적분한다는 의미가 아니라,(당연히 고등학교 교육과정에서 불연속함수의 적분은 다루지 않습니다.) 연속함수를 적분할 때 정의역이 끊겨있어 구간별로 적분해야되는 상황(적분 상수가 달라질 수 있음)을 말씀드린 거에요!
예를 들어 점근선이 존재해서 한 지점을 기준으로 정의역이 끊겨있는 상황이라고 합시다. 다만, 그 지점을 제외하고 나머지 부분은 다 연속이고요(1/x의 경우 x=0을 경계로 정의역이 끊겨있음)
이 경우 함수의 구간을 나누어 적분하면(x>0,x<0) 구간별로 적분 상수가 달라질 수 있다라는 의미입니다!
아하! 친절한 설명 감사드립니당><
넵! ㅎㅎ