함수추론 자작문제
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
실모 풀면 잘 나오는데 n제는 하도 안나와서 실모는 오르비에 물어봐도 그정도면...
-
벌써 5시구나 4
내일이 벌써 온다니.. 또 달려야하잖아..
-
궁금합니다!! 대기업말고 연구소로 빠질 수도 있나요?
-
98 91 1 89 99 문과입니다 연대 가능할까요? 원서를 제가 못써서 친구한테...
-
냥대 vs 성대 5
이제 진짜 등록해야 될 거 같은데 님들이면 냥대랑 성대 중 어디 등록할 꺼임? 과는...
-
노추 5
대 다 즈 비
-
잔다. 4
자야지. 도야지. 도야지는 돝 + 아지
-
떨어지면 당연히 떨어졌다고 욕하고 최초합하면 이럴거면 혼자 쓸 걸 돈 아깝다 하는데...
-
제 성적표로 성균관 경영 4칸 한양대 경제 4칸 중대 경영 6칸 뜨고 중대 ai...
-
지듣노 4
잘자...
-
일어났다 0
출근까지 3시간... 씻어야지
-
누구나 기출 회독만 안 하면 1등급은 무조건 2개월 안에 찍습니다. 그냥 볼 사람만 보세요. 6
안녕하세요. 하찮은강사입니다. 제목이 과장 같다고 생각하실 수 있지만, 결론부터...
-
부산대 갈만할까
-
얼버기 4
-
행복해
-
복학하면 0
25 새내기들이 뭐라 생각할따....
-
국수영탐탐 23221 백분위는 93 81 2 94 98 이라서 평균 백분위...
-
엄마도 엄마지만 남들이 들으면 존나 별거 아닌거에 나 혼자 발작함 재수하면 더...
-
등수 계속밀리네 0
잠이 확깨네
-
어느 정도까지 돌까요? 연대 2차에 의대증원 생각하면 여기 논술로 붙은 사람들이...
-
나만 휨? 4
ㅇㅇ?
-
단타는 역시 개 어렵다
-
한국사 아예안했는디 그냥 잘까요 아님 잠도 안오는데 걍 밤샐까요 (오후에 이미 4시간정도 잠)
-
친구 휴가나온다는데 남자둘이서 할만한것 추천좀여 꼭 홍대가아니여도 서울에서
-
고전 0
토맛토마토 토마토맛토
-
서성한윗공이냐 서울대 제일아래과 약스나냐..
-
확통 과탐 0
메디컬 도전하려하는데 확통 과탐 괜찮을까요 확통 사탐으로 수의대 가능하는곳 있나요 2026수능부터
-
와 과음했다 0
내일 서울 가야 하는데...
-
밤샌다 or 조금이라도 잔다 9시에자서 2시에 일어나긴함
-
저만그런가요? 4
수능끝나면 댕청해짐
-
오히려 내 동갑 친척은 현역 의대인데 난 현역 건대라 노인네들이 ㅈㄴ 비교함 난...
-
그게 나야 바 둠바 두비두밥~ ^^
-
일상공유 2
-
고민되네
-
저는 집이 홍익대랑 가까운 편이고 그래서 항상 고등학교 시절동안 홍대를 목표로...
-
집에 주차장도 있겠다 중고차 보는중
-
5칸 6칸 놀이터 원심분리기 타다가 날라가는
-
5시에 보자 5
ㅂㅂ
-
서든하면 요샌 최소 20대 후반 틀딱이라는데
-
서 모아보기 무한 새로고침 중이면 7ㅐ추
-
좋은 의견을 제시해주신 분들께는 얼마 안 남은 덕코를 뿌리고 가겠습니다 평소에 내가...
-
히다후루카와라고 한국으로 치면 진짜 개깡촌중 깡촌 인데 너의 이름은 에서 나온...
-
경국 문과를 버리고 홍전전을 가?
-
민간인->이병 진급 맞냐고.. ㅋㅋㅋㅋ
-
진짜 이유를 모르겠는 834기
-
적정인 대학교 최초합으로 붙고 상향인 대학교 추합 기다리는 상황이면 최초합 붙은...
-
좀 게이임? 근데 따로 쓸 곳이 마땅치가 않아서
-
훈련병 최자두 11
되기까지 19일.. 입대 전날에 훈련병 최자두로 닉 바꿔야지..
-
24,23,22...학번 의대생분들 들어와주세요!! 0
24학번 그리고 그 위 학번은 내년에도 휴학하실 생각인가요? 25학번으로 들어갈 거...
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!