누가누가 잘찍나(수학 ver.)
모든 실수 x에 대해 참 또는 거짓이 정의된 명제 L(x)가 있다(ex) L(x) = “x^2 < 4“). L(1)이 참이라 할 때, 다음 중 L(x)가 모든 자연수에 대해 참일 조건으로 알맞지 않은 것은?
(명시되어 있지 않은 한, 각 조건은 모든 실수에 대해 성립)
오랜만에 올려보네요…
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
예비고3국어 0
지금 2025 강기분을 시작할까요 아니면 기출 계속 돌리다 2026 강기분 나오면...
-
차영진쌤 미적분 팔로워 교재있는분 이부분 어디서 나오나요 0
기출강의에서 팔로워 강좌 "숨은변수찾기" 부분 복습하라는데 강의 가보니까 문항...
-
왜냐 제일 가까워서
-
공학전환 > 메디컬 등 입결상승 >> 여성위협? 잘 모르겠네
-
싹 뚝
-
걍 도파민 팡팡
-
점메 추천 제발 2
빨리 점메 추천 좀 해주세요
-
배고파요 엉엉
-
왜이렇게 어려움...18분이나 걸려버렸네
-
몇회차가 맛있었나요
-
제목 어그로고 점메추좀요
-
실모 잘친다고 수능 잘치는건 아니다만 막판이라 그런가 심리적으로 안정이 되네...
-
그냥 언매에서 두개 틀릴 각오해야겠다 사설 풀면 항상 두개정도 틀리거든
-
이게뭔…. 남녀평등아닌가? Hoxy…
-
“이러다 나 이대나온 남자야도?”...동덕여대 남녀공학 논의에, 총학 “절대 반대” 투쟁 예고 15
동덕여대측 “하나의 가능성일 뿐 논의가 발전되거나 결정된 것 없어“ 총학생회 “반대...
-
3키로 남았는데 어케 돌아감
-
왜자꾸 양수 k라는데 0을 생각해서 틀리는거지
-
근데 건조해져서 핸드크림도 자주 바름
-
수2 극한 0
이렇게 풀어도 되나요? 풀이랑 좀 달라요..
-
ㄱㅇㅇ
-
밝힐 친구가 없거든
-
과하지 않으면서 적당히 귀염귀염한 모습이 매력적이라는 말 들을 때마다 기분 좋아져서...
-
독서 8틀 문학 23, 29틀 화작 첫지문 보는 순간 멈칫했고 독서론을 풀고 얏됨을...
-
찬우쌤 종강편지 정말 정말 정말 읽고 싶은 온라인 수강생 인데요 1년간 타지에서...
-
너네 커뮤에는 현우진이 거쳐간 적 있냐?
-
11번 정도의 난이도만 있는 엔제 있을까요 간단하게 5시간 정도만 풀고 계산 감...
-
휴르비 5
한 2시간 휴릅함 ㅂㅂ
-
일단 나는 착한 글만 쓰긴 하는데 (뿌디딕) 그리고 이미 내 칭구들이랑 90명의...
-
올해 9월 학평 90 > 내년 3월 학평 96 제발..겨울 열심히 보낼게요ㅠ
-
수능가면 과탐러가 승자알듯
-
https://orbi.kr/00061719130 심지어 의대증원 예언함
-
메인 어지럽네... 만점도 생지 3등급대 될까말까한 난이도로 주제파악 못하고...
-
뭔가 흠칫해도 결국 리액션은 그 말 표면 자체에만 반응해서... 근데 딱히...
-
메인 무슨 일 2
한 분이 메인 다 차지하셨네 ㅋㅋㅋㅋ
-
둘다 화작 88인데 이거 난도 좀 있는 편 아님? 수능때 1컷은 뜨려나
-
사설로 잡친기분 1
동욱이와의 취클래스 데이트& 기출로 정상화 시켜야겠다
-
근데또 영어점수가 반대하네
-
독서 문학 언매 다 빡빡한듯..
-
나오는데 이감 파이널회차풀면 멘탈 나갈까요? 걍 쉬운거 사서 푸는게 나을까요
-
문학 오답률 1위 = 절대못맞힘 답지 봐도 이해가 하나도 안되네 아ㅋㅋ
-
진학사 유웨이에서 못보나요
-
얼버기 6
11시 전에 일어났으니까 얼버기
-
한양대 1차붙음 15
아 뒤에 적혀있는 영어는 알아서 생략하삼
-
제발 과학지문 22
난 기술지문이 싫다고
-
수능에 저 보정대로 나오면 얼마나 좋을까 ....... 본인 10월보정은 24145였음....
-
ㅈㄴ감격스럽다… 수능날 2 뜨면 정말 조켄네……
-
주변 친구들도 다 종합선발 떴던데 생각보다 우발을 적게 뽑나보네요? 1차 최초합하고...
-
이준구 이창용 경제학원론 펴라 P LP 참과 거짓 거짓이면서 참인 명제 양자역학... 전건긍정...
답: 모두 적절하다
1. 정의 그대로의 수학적 귀납법.
2. 조건에 따라 L(2^n)은 항상 참이고 L(n)이 참이면 mm인 자연수 k가 존재하고 이때 2^k보다 작은 자연수인 m에 대해 L(m)은 참이므로 모든 자연수에 대해 L이 참이다.
3. 일종의 ‘실수에 대한 수학적 귀납법‘이다. 우선 조건 하에서 L(2)가 참임을 증명할 수 있다면, 정확히 같은 방법으로 L(k)가 참일 때 L(k+1)이 참임을 증명할 수 있으므로 수학적 귀납법으로 증명이 완료된다. 이때 L(2)가 거짓이라 가정하고, 구간 [1, 2]에서 L(x)가 거짓인 x의 집합을 S라 하자. 또한 S의 최대 하계(S의 모든 원소 x에 대해 a<=x가 성립하는 실수 a를 S의 하계라 할 때, 이 중 최댓값)를 p라 두자. S가 공집합이 아니고 1보다 작은 수를 포함하지 않으므로 p는 정의되고, 어떤 y에 대해 1n인 자연수 m이 존재한다(아니라면 n은 ‘L이 참인 자연수의 집합‘의 최댓값이거나, 그 최댓값보다도 클 것이다). 이때 L(m)이 참이고 m>n이므로 L(n)도 참이다.
5. 명제 L’(n)을 ‘n보다 작거나 같은 모든 자연수 m에 대해, L(m)이 참이다‘로 두고 수학적 귀납법을 적용한다. L’(1)은 참거짓이 L(1)과 같으므로 참이고, L’(n)이 참인데 L’(n+1)이 거짓이려면 L(n+1)이 거짓이어야 할 텐데 L(1), L(2)…L(n)이 참이므로 이는 불가능하다.
6. 5번과 정확히 똑같게 L’을 설정하면 수학적 귀납법으로 쉽게 보일 수 있다.
쓰다보니 길어졌네요…
오르비 이슈로 중간에 짤린 부분이 있네요… 부등호 표기에서 문제가 생기는듯
뭔가 다 된다는 답이 아닐 것 같아서 계속 확인하게 되네
확실히 3이 제일 비직관적이긴 해요
나머지는 결국 수학적 귀납법에서 유도되니까
우왕 맞췄다
4: 코시의 수학적 귀납법 (또는 역 수학적 귀납법)
한국에선 역 수학적 귀납법이라 많이 부르고 외국에선 코시 수학적 귀납법이라 많이 부르는 듯
6: 강한 수학적 귀납법