2021연논 질문 하나만 해도 될까여
3-2 해설에 일반성을 잃지 않고 사각형이 탑처럼 쌓여 올려져 있는 첫번째 그림 형태를 가정하고 풀이하는데, 아래 그림도 포함된 풀이인지 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
작년에 이상치 결측치 딱 맞추진 못햇고 수능 2주전에 톡방에서 애들이랑...
-
수능때 물 2
페트병 500ml 가져갈때 라벨 떼고 가져가야하나요? 그리고 시험을 볼때 같이...
-
국수베이스충분함
-
그냥 느낌이 그럼 참고로 작년에 선거 관련 지문 나올거 같다고 느낌왔는데 맞았음...
-
수많은 시험 중에 하나일뿐 능력껏 보는거고 그만큼의 점수가 나오는게 당연 대학 맘에...
-
하 인생 잘못 산 거 같음
-
분명 옛날엔 덕코가 많았던 거 같은데 그땐 어케 많았던 거지..? 오르비를 미친 듯이 했었나..??
-
아니면 오늘 몸 피곤하게 만드려고 전략적으로 안자는거임?
-
하루 벼락치기 해서 1등급 쟁취하는거 보여준다 내가 보여줄게!! 20시간 정도면...
-
갑자기 우기분1에 뚝딱정리 올라온 거 보니까 안 나올 거 같음. 힝.
-
실제 상명대는 모르고 상명여대는 아시는분들 있음... 근데 그분들에겐 상명여대가 인식 좋았던듯
-
쉬운문제 한 10개 빨리풀고 드가기 VS 오답정리한 준킬러 한두개 다시 풀고드가기
-
그냥 오늘은 쉬운실모 84-88 띄우고 끝내야 할 듯 0
그래야 수능장에서 멘탈 괜찮을 듯
-
괜히 뭐 먹엇네 0
배불러서 잠이 안와
-
낼 아무 수험장 들가서 아파트 부를건데 진지하게 민원으로 신고당할 위험 있나요?
-
자라. 2
캬캬.
-
연고서성한 학부수준 수능 경제 풀 때 도움될까요?
-
아까 차였다고 글 썼던 사람인데 여친(이젠 전여친) 친구한테 왜 저러는지 아냐고...
-
지금 시원하게 치고 내일은 참고 수능보러가라 ㅇㅇ 진지하게 하는 조언이다
-
원솔멀텍 다 듣고 난 후에 겨울방학에 기출 많은거 새로 풀건디 머가 좋을까요? 지금...
-
기운 받아가서 니들도 올1등급 받아오길 바란다
-
지금 기도중인거 0
제발 집에서 가까운 고등학교 이사와서 졸업한 곳으로 시험보려가려면 1시간가야됨
-
현재 고2인데 수1, 수2 시발점부터 해야하나요 아니면 바로 뉴런으로 가야하나요?...
-
무당도 아니고 맨날 이 시즌되면 이게 나오네 마네하고 다같이 달달 떨고있는게 너무...
-
더데유데 시즌2 1회 풀어봤는데 점수가 80점 초반나옴.. 하 1등급 안나오게 생겼네
-
솔직히 무지성 암기, 겉으로 드러나는 인간관계때문에 자퇴한것도 맞고 갑자기 씨발...
-
ㅈ됬어요 강철중 설맞이 60점대 처박음;;; 이상하게 쉬운4점 4개나...
-
저녁을 늦게 많이 먹어서인지 계속 꼬르륵 거리고 10시에 누웠다가 11시 30에...
-
책상 모서리에 시계 세워두고 테이프로 고정하세요
-
내동생은 0
*여자임 에타 난리났다고 보여주면서 연대(연세대아님ㅋㅋ)니 뭐니 개역겹다고하던데 멀쩡한애라 다행
-
누나랑 절연할까요? 20
수능 하루남았는데 미국으로 탈조하는 대학 가고 싶은게 꿈이라 말했더니 동양인 자퇴생...
-
어그로ㅈㅅㅠㅠ근데 제발 답좀해주세요 낙은별곡 5월에 출제됐다는데 왜 주요작품에 매번...
-
정병호 2
병호쌤 들으려고 하는데 커리 언제 뜨나여
-
저 배아플까봐 내과 가려고요..
-
조졌는데 어카냐 1
지2 다까먹음
-
맞는 말이긴 하고 실제로도 하려고 했는데 직접 들으니까 세상 쫄리네요 살면서 아빠랑...
-
화작에서 손가락걸기를 못 함 심지어 약간이라도 애매한 선지가 있으면 이거 근거찾고...
-
6평 48 9월 45 나왔었는데 최저걸려있기도 하고 물스퍼거들 때문에 쫄림
-
일케 하는게 맞나요..? 주변에 잘하는 친구는 몇시간이고 고민해서 푼다는데 저는...
-
어케잠자지
-
국어 2506 수학 2509 물리 2506 지구 2506 2509
-
잠자기 싫으니 0
2시에 자야징
-
그냥 그렇다
-
저보다 영어 훨씬 잘 하시는 듯
-
영어 필요없음 3
현재 고2이고 건대 이상 자연계 희망하는 중입니다.. 어릴때부터 영어를 좀 싫어하는...
-
어땠었지
-
나 잠이 안온다 하.... 2시간 뒤척이다 일어남
-
불만 표출 방법이 상당히 잘못돼보임 공학 추진을 반대하는 건 충분히 이해가 되고...
저도예전에 질문해봤는데 돌리면 똑같아요.
직각삼각형이나오는게 의문이였는데 임의의삼각형으로 논하는거여서 사실상 위의 경우만 논해도 충분해요.
음.. 어렵네용
이렇게생각하면되요. 하나를 고정시키잖아요.
그러면 아래삼각형은 일단무시하세요.
그러면 특수한상황 일반적인상황으로 나누어져요
그러니 두개다논할이유가없죠
3-1 풀어보시면, 직사각형 PQRS의 변이 변AB, 변BC, 변AC 위에 있을 수 있기 때문에 세가지 삼각형이 나오는데, 세가지 경우 모두 공유하는 변의 길이가 1/2k (단, k=변AB or k=변BC or k=변AC) 일 때 동일한 최댓값을 가짐을 알게 되실 겁니다.
따라서 직사각형 P'Q'R'S' 를 첫번째 그림처럼 잡든 두번째 그림처럼 잡든 결과는 동일하므로, 편한 첫번째 경우로 푸는 것입니다.
그리고 사실 이런 연결형 문제는 대놓고 3-1 결과를 이용하라는 거여서...
자세한 설명 감사합니다. 좀 더 생각해봐야겠습니다 :)
3-1 풀이까지 적다가 해결하셨을 거라 생각해 지웠습니다.
그림과 같이 S=(a*l)/2 일 때 최댓값을 가지는데,
ㄱ, ㄴ, ㄷ 세가지 경우 모두 같은 삼각형이기 때문에 당연히 넓이 역시 동일하므로
a*l = b*m = c*n 이 성립합니다.
따라서 I 의 탑처럼 쌓인 경우와 II 의 경우 둘 다 같은 넓이이기 때문에 굳이 II 의 경우를 고려하지 않아도 되는 것입니다.
친절한 해설 정말 감사합니다 이해됐습니다 !! :)
설명을 너무 못했는데 이해하셨다니 다행이네요...
다시 보니 S=(a*l)/2이 아니라 (a*l)/4인데 잘못 적었네요 ㅋㅋ
ㄱ 의 경우 S = (a*l)/4
ㄴ 의 경우 S = (b*m)/4
ㄷ 의 경우 S = (c*m)/4
일 때 최대인데
a*l = b*m = c*n 이므로 세 PQRS 전부 같은 넓이라는 것을 말씀드리고 싶었는데 너무 대충 넘어간 것 같습니다..
그림처럼 P’Q’R’S’ 를 설정하는 과정이 다르고 넓이를 구하는 과정이랑 개념 자체가 달라고 결과적으로 넓이가 같다면 일반성을 잃지 않는다는 말씀이신가요??
아 죄송합니다. 어떤 부분이 궁금하신 건지도 모르고 다른 부분을 설명하고 있었네요...
계산해보면 그림의 2번의 경우 x = 1일 때
즉, 삼각형 ABC가 직각삼각형일 때 최댓값 (a*l)/3 을 가지는 것을 알 수 있는데,
돌려보면 결국 1번과 동일한 상황이라 그렇습니다.
정성스럽게 답변해주셔서 정말감사합니다!!
시간날때마다 고민하고 있었는데
덕분에 이해됐습니다. 감사합니다!!