[칼럼] 준킬러를 빠르게 푸는 비밀을 알...
저는 여러분을 위해 매주 3편의 편지를 쓰고 있습니다.
카톡으로 전달받는 3편의 편지, 편하게 읽어보세요.
어떤 편지인가요? ► https://bit.ly/mental_letter
모바일이라면 링크를 꾸~욱!
현재 수학 4~5등급인 학생들은
오늘 칼럼을 적용시키기에 무리가 있으니,
마지막에 나오는 등급별 한 마디를 읽어주시면 됩니다.
이 문제 풀 수 있었던 문제였네..
국어 실전 TIP의 반응이 뜨거웠던 기억이 있습니다. 그래서 오늘은 수학 실전 관련한 TIP을 준비해 봤습니다 :)
풀 수 있는 문제 다 풀고 어려운 킬러 문제 풀다가 시험이 끝나는 학생들이라면, 오늘 칼럼을 가볍게 읽어주시면 됩니다. 그런데 만약 자신이 준킬러 문제 풀다가 시간이 다 돼서 시험이 끝나버리는 학생이라면, 오늘 칼럼을 집중해서 두 번 읽는 것을 권해드립니다.
여러분들이 왜 준킬러 문제를 풀다가 시험이 끝나 버리게 되는지 원인을 알려드릴 겁니다. 원인을 알지 못하면 해결하지 못합니다. 원인을 알면 문제를 해결할 수 있게 됩니다. 아니, 조금 더 정확히는
원인을 알아야 문제를 해결할 수 있죠.
여러분은 준킬러를 풀다가 시간을 다 써서 시험이 끝나게 되는 원인을 제대로 알고 계신가요? 지금부터 제대로 알려드리겠습니다. 오늘의 칼럼은 여러분이 이미 잘 알고 있는 사실로부터 시작됩니다.
수능 수학 공부는 크게 세 단계로 나뉜다는 건 다들 들어본 적 있을 거예요.
① 개념 학습
② 문제 풀이
③ 실전 경험
수학 실전 관련 TIP을 알려드린다고 했기 때문에 세 번째 단계인 실전 경험에 대해 이야기를 할 것이라 생각이 들겠지만 그렇지 않습니다. 오늘 말씀드리는 실전에서의 문제의 원인은 두 번째 단계인 문제 풀이에 있습니다. 문제 풀이와 관련해서 중하위권 학생들이 한 가지를 놓치고 있기 때문에 실전에서 시간 부족을 호소하게 된다는 말이랍니다 :)
혹시, 시험 끝나고 나서 이런 생각을 자주 하는 학생들이 있나요?
아.. 이 문제 풀 수 있었던 문제였네..
헐.. 왜 내가 이 방법으로 풀려 했지?
이러한 생각을 자주 하는 학생들이라면 지금부터 집중 집중, 집중! 해주세요.
아주 강력한 수학 실전 대비 TIP
중하위권들은 문제풀이 단계에서 문제를 푸는 것에 너무 많은 힘을 들이기 때문에 해설을 제대로 활용하는 방법을 잘 모릅니다. 해설을 꼼꼼히 보는 것과 제대로 활용하는 것은 전혀 다른 이야기입니다. 잘못된 방법으로도 얼마든 꼼꼼히 볼 수 있거든요.
상위권의 사고방식을 가진 학생들은 해설을 어떤 식으로 활용할까요? 두 가지 경우에 따라 각각 다릅니다.
1. 풀다가 막혔지만 어떻게든 풀어냈을 때
2. 풀다가 막혀서 결국 못 풀어냈을 때
이 두 가지 경우에 대한 각각의 해설 활용 방법을 이해하고 실천한다면 여러분의 문제 풀이 속도가 훨씬 더 빨라지면서 시험장에서 준킬러를 보다 더 빠르게 풀어내고 킬러까지 도전해 볼 수 있게 될 겁니다. 그리고 오늘 칼럼에서는 두 가지 경우 중에 첫 번째 경우를 살펴볼 예정입니다.
우선 중위권 학생들이 해설지를 어떻게 보고 있는지를 알아보겠습니다. 그래야 상위권들이 해설지를 보는 방식과의 차이를 확실하게 알 수 있겠죠? 혹시 여러분의 모습은 아닌지 비교해 보시길 바랍니다.
상위권들이 격차를 내는 방법
상위권으로 올라가지 못하고 성적이 정체되어 있는 학생들이 놓치고 있는 한 가지가 있습니다.
잘못된 풀이법.
정확히는, 해설지에 없는 잘못된 풀이법에 시간을 투자하지 않는다는 것이죠. 해설지에 없는 잘못된 풀이법에 시간을 투자하셔야 합니다.
말도 안 되는 소리를 하는 것 같나요? 그렇지 않습니다. 상위권들은 막혔던 문제를 풀고 나서 해설지에 나와 있지 않은 잘못된 풀이법, 즉 자신이 막혔던 이유에 시간을 더 많이 투자합니다. A라는 풀이법을 시도했다가 막히고 또 다른 B라는 풀이법을 시도해서 문제를 풀어냈을 때, 풀어냈다는 사실에 집중하거나 풀이법 B에만 집중하기보다는
나는 왜 처음에 풀이법 A를 시도했을까?
여기에 집중합니다. 해설지에는 잘못된 풀이법 A가 나와 있지 않아요. 왜냐? 그렇게 안 풀리니까. 잘못된 풀이법이 니까 당연히 안 나와 있겠죠. 근데 상위권들은 이 해설지에 없는 그 잘못된 풀이법에 시간을 투자합니다. 왜냐?
실전에서 그 풀이법이 떠오르면 안 되니까.
실전에서 풀이법 A가 떠오르지 않게끔 못을 박아버리는 거예요. 그래야 실전에서 풀이법 B를 떠올려 시간을 낭비하지 않을 수 있으니까요.
왜 풀이법 A로는 풀리지 않지?
왜 나는 A라는 잘못된 풀이법이 먼저 떠올랐을까?
이전에 풀이법 A로도 풀린 문제가 있었던 것 같은데?
상위권들은 이런 고민을 하기 때문에 격차를 점점 벌릴 수 있는 거예요. 상위권들은 어떤 문제를 풀 수 있는 방법만 생각하는 것이 아니라 이 문제 풀 수 없는 방법도 같이 고려해서, 이 두 방법의 차이점을 비교 분석한 결과를 해당 문제의 풀이법으로 알고 있는 거예요. 간단히 말해, 어떤 문제에 대한 올바른 풀이법과 잘못된 풀이법을 둘 다 안다는 겁니다. 그렇기 때문에 실전에서 잘못된 풀이법을 쓰지 않을 수 있는 것이죠.
반면에 성적이 오르지 않는 학생들은 올바른 풀이법만 계속 봅니다. 시험장에서 결과는 뻔하죠. 잘못된 풀이법으로 푼 다음에서야 '아 맞다.. 이거 이렇게 풀면 안 됐었지..' 이런 생각을 하게 됩니다. 또는 풀이법 A로 문제를 풀려고 하는데 잘 안 풀리니까 멘탈이 크게 흔들려버려서 본인이 열심히 공부한 올바른 풀이법 B를 떠올리지 못해 해당 문제를 틀리고, 더 나아가 시험 전체를 망치게 됩니다.
정리해보자면 시간 부족은 올바른 풀이로 느리게 풀어서가 아니라, 잘못된 풀이를 빠르게 쳐내지 못해서 일어나는 현상에 더 가깝습니다.
"시험 끝나고 나면 다 풀려요."
맞는 말입니다. 시험 치면서 잘못된 풀이법 A로 이미 풀어봤잖아요. 그래서 안 되는 걸 알게 됐잖아요. 그러니까 시험 끝나고 착각하는 거예요.
'풀이법 B로 풀면 되네. 이걸 왜 못했지?
나는 이걸 풀 수 있는 실력을 가졌는데..'
착각하면 안 됩니다. 이 학생은 이 문제를 실전에서 풀 수 있는 실력이 없다고 인정해야 진정한 성장을 시작할 수 있습니다. 물론 이 학생에게 시간이 충분히 주어졌으면 풀 수 있었을 수도 있을 겁니다. 근데 그건 잘못된 가정이죠. 수능에서는 특정 학생에게만 시간이 더 주어지는 일이 일어나지 않습니다. 결국, 이 학생은 그 문제를 적당한 시간 내에 한 번에 풀어낼 실력이 없는 것이라 보는 것이 올바른 피드백입니다.
등급별 한 마디
왜 여러분이 시간이 부족했는지 이제 이해가 되시나요?
여러분들이 지금 만약 수학 3등급이라면 오늘 말씀드린 내용 꼭 숙지해서 해설을 잘 활용해 보세요. 정체기를 지나 2등급, 1등급으로 성장해나가는 데 정말 큰 도움이 될 겁니다.
만약 지금 본인이 2등급인데 정체되어 있다? 그러면 이 부분을 놓치고 있었던 건 아닌지 돌아보는 시간을 가져보세요. 1등급으로 가는 열쇠가 숨겨져 있을 수 있습니다.
만약 자신이 현재 수학 4~5등급이다. 이런 학생들은 풀다가 막혔을 때 어떻게든 풀어내는 경험보다는, 결국 막혀서 풀어내지 못하는 경우가 더 많을 거예요. 정형화된 유형의 문제들의 올바른 풀이법을 빠르게 학습해서 자신의 것으로 만드는 게 우선입니다.
혹시 오늘 칼럼을 읽으며 뜨끔하셨나요? 여러분의 모습과 비슷한가요? 그렇다면 착각에서 하루 빨리 벗어나셔야 됩니다. 그래야 같은 실수를 반복하지 않게 될 거니까요.
제 계정을 팔로우 해두시면 칼럼을 놓치지 않을 수 있습니다
+ 여러분의 좋아요와 댓글은 칼럼 연재에 큰 힘이 됩니다
여러분이 정체되어 있는 구간을 빠르게 벗어날 수 있도록, 수능까지 남은 기간 최선을 다해 칼럼을 집필해보도록 하겠습니다. 이번 주말도 힘내요.
진심으로 응원할게요 :)
0 XDK (+100)
-
100
-
90분 컷 100점 30번 2506 재탕 22번 22수능 재탕 공통 15번, 21번...
-
찾아보니까 흥미로운 인물같은데 기회 되면 얘기 한 번 해보고 싶군요
-
드릴 풀어서 3분의 2정도 맞추면 내수준에 맞는건가 1
22번급 30번급은 강의듣고 아이디어만 얻어가야지
-
개념 모르면 틀리게 만드는 경우도 있나요? 마지막으로 n제 풀면서 정리하려고 하는데...
-
???:불가능하다고?? 이봐 해보기는 해봤어? …. 그.. 어떻게 하죠
-
추론 및 정보처리 하는 능력은 올랐으나 뇌를 너무 많이 활용하여 체력 및 정신이...
-
탐구 ebs연계 0
과탐러인데 수능에서 과탐연계 많나요 작년에 6,9평은 그래도 비슷한 자료라던가...
-
8개짜리 초콜릿박스가 있는데 어제 d-7에 맞춰서 1개먹고 오늘 한개 또 먹어서...
-
평가원이 만든 문제라고 속이면 “역시 평가원 문제 잘 만들어!” 이럴거 같음...
-
6-9 6-10 둘다 한다는데 둘다 품?
-
국어 연계 0
뭐가나음요 수완하나도안함지금
-
약간 어그로성이긴 한데 지문 봤을 때 글 소재가 제 관심분야인 3점 문제가 관심분야...
-
찍기 안함 막페 세개 못풀고 1번 틀림 홈스가 맨틀 대류 원동력 발견못해서 맨들...
-
뉴비입니다 39
피곤한 하루네요
-
죽음으로 졸리네... 숙제 한참 남았는데 걍 ㄹㅈㄷ죽싶
-
대성 공홈엔 없는 것 같던데
-
83~96이면 진동폭이 너무 심한데 또 주사위 굴려야 되나
-
정법ox 0
법관이 관습법을 적용하여 피고인에게 불리한 판결을 내릴 수 없도록하여 법적 안정성을...
-
ebs 만점마무리 봉투 (작수 99%인데 ) 이거 맞음? 0
작수 언매 91점 백분위 99% 였는데 만점 마무리 봉투모고 82점 나온다. 시즌...
-
빠릿빠릿하게 케이스분류를 못하겠음 요새… 국어풀때지문정보량많으면걍던지고싶음
-
ㅅㅂ 14번 왜틀린거지
-
되고싶다
-
ㅈㄱㄴ
-
몬스터두캔클리어 8
오늘수업끝 수학복습하고과제하고물리실험한거정리해둘생각인데 몬스터하나더까야하나 9시까지될려나
-
스태틱 12
의 단검(sweet sword)
-
열심히 해야지
-
예전에 소개팅 했을때 24
상대방 분이 삼수 하셨대서 삼수 선에서 잘 정리 하셨네요 이 드립쳤는데 나중에...
-
고등학교가 그리워요
-
뭔소리인지아직도이해못한듯
-
탐구하나는 과탐으로 정했는제 남은 탐구하나를 생명으로 할지 사탐으로 돌릴지...
-
올해 탐구 화생에서 지12로 바꿨는데 수학 제끼고 두달정도 국어랑 지2파다가...
-
ㅈ같은 새까들 너무많아서
-
삼수선만쓰다가 병훈햄 공간좌표쓰는거보니까 이해가 안댐
-
누룽지 좋아함? 0
ㅈㄱㄴ
-
첫번째부터 마지막 번호까지 일자로 밀어도 되나요? 어디선가 완전 한줄로 밀면...
-
제적은 돌아가는것조차 미지수란말이야,
-
수능못보면어때 1
군수하면 그만이야~~
-
미적 교과개념까지 살까요..
-
국어하다가 심심하이 풀어보고싶네요
-
아닛 19
내 자존심좀 지켜줘ㅏ ㅜㅜ
-
차영진t 팔로워 수2 부교재 얼마나 필요한가요??? 4
사보려는데 부교재는 재고소진이네요 부교재가 필기노트같은데 없으면 많이...
-
이차곡선 접선공식 까먹음
-
토하고 머리아프고 이건 왜 아픈걸까..
-
트럼프라고 봄 미국 대선 후유증이 있나...
-
술공부 뭔 느낌일지 궁굼함…
-
수학 파이널 4
미적이고 2 3 진동하는 성적입니당 목표는 2고요… 지금 올해 기출 전부 다 보고...
-
실전 개념 강좌에 불필요한거 하나도 없고 빠지는 것도 없고 엄청 탄탄함 수능 최적화...
-
내스타일 이였다..
-
실모 다시 풀때만 잘 풀리는 슬럼프는 어찌 극복하나요 0
저번주는 내내 좀 잘 하다가 이번주 기복 좀 있더니 오늘은 오전에 집중이 너무 풀린...
-
난 ㅈㄴ 떨림
오늘도 출석을.. 매번 감사드립니다!!
올리시는 글을 다 보는건 아니지만.. 보는 글은 모두 저에게 도움이 되는 글이네요.. 감사합니다!!
도움되는 글이라 다행입니다. 앞으로도 정진해보도록 하겠습니다!!
오늘 하루도 수고 많으셨어요 :)
와..머리 한 대 맞은 기분이네요..ㅋㅋ 지금까지 저는 왜 이 생각을 못했는지,, 좋은 칼럼 너무 감사합니다!!
매번 감사드립니다 :) 닉네임 기억하고 있어요!
닉변하셨군요. 기억해두겠습니다
라고 하기엔 옆에 떡하니..ㅎ
오래전에 풀어서 문제 풀 당시의 기억이 희미해진 문제라거나, 회독을 하는 경우에는 어떻게 피드백 해야 하나요?
곧 댓글 다시 달아드릴게요 :)
안녕하세요! 어떤 칼럼을 추천드릴까 고민하다보니 시간이 조금 흘렀네요ㅎㅎ 골목대장퉁뚱이님의 모든 상황을 알 수는 없기에 가장 근본적인 부분을 다루는 칼럼들을 골라봤어요. 도움이 되길 바랍니다 :)
쌓이지 않는 공부로 스트레스 받는다면
https://www.amatda.com/mental/026/again149
오늘 공부할 필요가 없는 이유
https://www.amatda.com/mental/033/again822
제 상황에 딱 들어맞는 조언인 것 같아요..! 그동안 너무 꼼꼼히 공부하느라 진도가 느리게 나가는 상황이었거든요.. 감사합니다
맞말추!!
감사드립니다ㅎㅎ 응원에 힘입어 열심히 산 덕분에 곧 하나 더 올라갈 예정이에요 :)
상위권 입장에서 말씀드리자면
수학이나 과탐의 좋은 점은 끝이 있다는 점이죠
과탐은 제가 감히 조언을 못 드리겠고
수학의 경우에는 조언을 몇마디 드리겠습니다
(1~3등급, 킬러와 준킬러 문제의 경우)
1. 문제 풀기도 전에 풀이법을 생각하지 마세요
문제는 풀리라고 내는 겁니다
문제를 읽고, 의미하는 바를 수학적 표현으로 바꾸고 해석합니다
그리고 그 해석으로 나온 문제를 다시 해석하세요
이것이 곧 모범적인 풀이법이고 평가원은 이렇게 낼 수밖에 없습니다
다른 말로 하자면 거시적 해법 대신 미시적 해법을 찾으라는 것입니다
거시적 해법은 당연히 출제자가 숨깁니다
하지만 미시적 해법은 숨기지도 않고 숨길 수도 없습니다
그리고 우리에게도 익숙하죠
2. 풀이의 선후관계
그렇다고 아무렇게나 손대면 안됩니다
문제가 복잡한 매듭이라고 해 봅시다
단칼에 베어버리면 0점이니 차근차근 풀어야겠죠
가장 문제의 핵심에 근접하면서도 피상적인 문제를 풀어야 합니다
그게 뭐냐고요?
모릅니다(사실 어느 정도 짐작은 갑니다만)
여기선 시행착오를 거치는 수밖에 없습니다
풀이법 A로 풀었을 때 시간이 오래 걸렸고, 해설지의 풀이법 B로 풀었을 때 쉽게 풀렸다면
여러분은 풀이법 B가 아니라 A로 푸는 뇌를 가지고 계신 겁니다
풀이법 한번 보고 풀었다고 뇌리에 남지 않습니다
그러니 풀이법 A를 분석하세요
윗글과도 상통하는 내용입니다
여러분이 성장하시면 자연스레 모범 풀이에 가깝게 사고하게 될 겁니다
추가로 말씀드리자면 수학은 빠르게 안정적인 1등급에 도달하는 것이 낫습니다
어 저 오르비 뉴비인데 이분 글 도움 많이 되네요 구독 누르고 많이 봐야겠다
감사합니다 :) 많이 읽고 많이많이 성장하시길 바랄게요!
6모 확통5등급은 지금부터 뭘해야할까요?ㅠㅠ 시발점 1회독한 후 병원다느느라고 2달정도셔서 개념이 가물가물합니다.