-수II, [미소변화율을 논함 3] • 적용 편
*좋아요와 팔로우는 필자에게 큰 동기부여가 됩니다 :D
바로 문제부터 보시겠습니다, 다음 두 문항을 보고 떠오르는 풀이의 방향성을 정해봅시다!
*다 해결하셔도 좋고, 풀이 방향성만 마음속으로 정하셔도 충분합니다!
1번 문제
-東京工業大学(도쿄공업대학) 본고사 중 발췌
14. a>0, t>0에 대해 정적분 S(a,t)를 생각합니다.
(1) a를 고정했을 때, t에대한 함수 S(a,t)의 최솟값 m(a)를 구하시오. [4점]
(2) 다음 극한을 계산하시오. [2점]
2번 문제
-18.03.30 수학 가형
30. g(x)의 극댓값과 극솟값의 차이를 구하시오. [4점]
다 정하셨나요?
제가 두 문제를 처음에 보고 든 생각을 그대로 적자면
"함수가 간단하네요? 피적분함수는 그릴 수 있다면 그려보는 편이 좋겠어요. ->
1번 문제는 조건에 따라 a를 상수 취급하고 t가 움직임에 따라 관찰해보고,
2번 문제는 x와 y=f(x)를 움직이며 관찰하면 되겠군요!
두 문제의 공식 해설은 다음과 같습니다.
(ハイレベル 数学iii•C 중 발췌)
역시 계산은 조금 많지만, 흠잡을 곳 없는 자명한 풀이입니다.
그치만 저희에게는 이전에 학습한 미소변화율 개념이 있고, 이를 이용한다면 단축할 수 있겠다는 생각이 드네요.
*못 보신 분들을 위한 이전 화 링크입니다.
-수II, [미소변화율을 논함] : https://orbi.kr/00066494675
-수II, [미소변화율을 논함 2] : https://orbi.kr/00066523574
두 문제 모두 절댓값이 끼어 있는 정적분으로 정의된 함수이기에, 구간을 나누어 넓이함수를 구하고 미분하는게 출제의도일 테지만,
적분 값을 넓이로 시각화하여 관찰하면 넓이함수의 증감을 바로 알 수 있어요.
2번 문제가 1번 문제의 업그레이드 버젼이기에, 2번문제를 분석하고 1번문제의 해설은 아래 Solution에 추가했어요
|f(t)-f(x)|를 구간 [0,x] 에서 적분한 함수가 g(x)이니
조금씩 x를 키워가며 넓이함수를 관찰하겠습니다.
이 행동의 핵심은 다음과 같습니다.
[0<x<1]일 때 x가 커짐에 따라 y=f(x) 기준선은 위로 올라가며, 넓이의 왼쪽 부분 A는 빨간 형광펜만큼 계속 증가함을 알 수 있습니다.
즉 g(x)는 [0<x<1]에서 증가합니다.
X=1을 넘어서는 순간 기준선 y=f(x)의 운동방향이 아래로 바뀌고, x가 진짜 엄청 미세하게 커짐에 따라 A부분의 넓이는 파란 형광펜만큼 줄고, B 부분의 넓이는 빨간 형관펜만큼 늘어납니다. * 파란 형광펜 부분을 dA, 빨간 형광펜 부분을 dB라 하겠습니다.
기준선이 아래로 이동한다고 할 때, 사진에서 더 움직여도 감소하는 넓이 dA가 증가하는 넓이 dB보다 크기에 총 넓이함수는 (1<x<1+ε) 에서 감소합니다. *(ε는 적당히 작은 양수)
즉 g(x)는 (1<x<1+ε) 에서 감소하며, X=1에서 넓이함수의 증감이 바뀌므로 x=1에서 극대입니다.
이후 언제가 넓이함수의 증감이 다시 바뀌는 지점일까요?
dA>dB일땐 쭉 감소하다가 dA = dB를 거쳐 dA<dB이면 증가하겠군요.
즉 넓이함수의 극소는 dA = dB 일 때겠군요. +(사족)이로 대강의 g(x)의 개형도 그려낼 수 있습니다
(TMI) 실제로 그린 g(x)의 개형 (A의 자취)
dA와 dB는 x좌표 차이가 가로인 미세한 직사각형인데, 세로는 함께 같은 속도로 움직이니 같다고 하면 x좌표차이가 같은 부분이겠군요.
X절편 차가 동일함 + 함수가 x=1 선대칭임을 이용하면 극소가 x=4/3에서 생김을 알 수 있고 적분을 계산하면 답을 얻을 수 있습니다.
Solution) 02번 문제
Solution) 01번 문제
(저는 1번 문제의 함수 표현 S(a,t)가 마음에 들더군요..! 한 변수 고정하는 부분을 언급하지 않았어도 두개 이상의 변수 *특히 기하(평면벡터)등에서 스스로 한 변수를 고정하고 다른 하나를 움직여 보면 좋아요! )
긴 글 읽어주셔서 정말 감사합니다! :D
정성이 들어간 글인 만큼 여러 번 연습하면 꼭 본인의 것으로 만들 수 있을거에요
0 XDK (+28,000)
-
17,000
-
5,000
-
5,000
-
1,000
-
헬스장에서 찍은건 어케안거지 ㄷㄷ
-
얼굴 꼬라지 ㅋㅋ
-
남고나와서
-
이런개시.발 0
예상 나이 27은 진짜 전쟁하자는거냐?
-
시발 1
-
ㅇㅈ 3
얼굴 등급 5등급 ㅋㅋㅋㅋㅋ
-
씨발 5
-
본 강의 듣고 다음날부터는 엮어읽기랑 매월승리 푸는거잖아요 시간을 재진않지만 풀고...
-
문과를 탈출하는 단 한가지 경우의 수...
-
ai 얼평 ㅇㅈ 10
상위 17퍼면 몇등급이냐? 개조졌네 이거
-
시발점 0
예비 고3이고 고1부터 고2 까지 수학 모고는 항상 2떴는데 개념이 부족한 느낌이라...
-
실생활에서도 이렇게 운전하면 차 금방 망가지는거 아닌가요?
-
번따횟수 이런거말고 단순점수는 나름 객관적으로 잘주는거같음 잘생긴 사람 사진 넣으면...
-
작수 5 나왔고 평소 모의고사는 3-4 왔다갔다 했던 사람인데 작년에 미적분을 진짜...
-
뭔가 크게 빌런이라 할건 없었는데 간단히 적어보겠음 1. 감독관 일단 파본검사는...
-
우선 본인은 초딩때부터 경찰관이 꿈이었음(아마 명탐정코난의 영향) 고딩때도 계속...
-
좆고아새끼같은 팀원 존나잡아주네 아오
-
25수능 화작 선택해서 92점 맞았습니다 (16, 39, 45틀) 초반엔 국어는...
-
한번 들어보는거 괜찮나
-
ㅈㄱㄴ
-
흠..
-
이런 과목은 해도 괜찮음? 세지 할까 했는데 3만명이라 고민되네
-
필기: 한문철의 힘으로 합격 근데 커트라인 딱걸림 기능1차시도: 전진해야하는데...
-
중경외시 라인 10명 정도 뽑는 소수과인데 저보다 윗점수인 분들 점수 고속 돌려보니...
-
이 ㅈ같은샤끼야
-
ai외모평가.. 10
하위 20퍼 나왓음.. 울엇어
-
그럼그럼 ㅋㅋ
-
야짤러=승리(김승리아님) 강 나라 꼬라지가 ㅋㅋ
-
이번에 처음 미적분 나가는데요.. 학원 다니다가 도저히 안 맞아서 1월까지 미적분...
-
현역 수능 이번에 보고 왔고 25353 나왔어요 현실적으로 재수해서 동홍..국숭세...
-
지인선 n제 풀고 싶다
-
2021년경쯤 기존 아청물을 성착취물 취급으로 바뀐답시고 아청법 기존 조문에서...
-
30분하면 국어끝나내..
-
250109 공부 인증 feat. 이기상쌤 죄송해요 ㅠ 2
역대급 집중 안되는날. 내일부터 다시 풀로 달리자
-
기능2트 도로주행4트 마지막 도로주행때 감독관이랑 아가리배틀떠서 이겨서 면허받아냄...
-
1. 이뤄놓은거 없이 남의 성과를 내려치는 사람 2. 자기가 이뤄놓은 결과에...
-
걍 미리 살까 아직 정법vs생윤 고민 중이긴 한데
-
김동욱 언매 체크매이트 오티 듣는데 책까지 다 삿는데어떡함 책 팔아야되나…
-
뭔일 있었나요
-
재수해서 교차로 성대 사과계를 갔고 삼반수 망해서 서강대 자연계열 붙을 것 같은데...
-
문학 안해주시는 줄 알고 문학은 강민철 들으려햇는데 안들어도 ㄱㅊ을까요
-
내가불쾌감이생기는얼굴인지아닌지궁금함
-
그냥 롤 챌린저가 플다 구간 양학하는 내용같은데 이게 재밌나요
-
코코낸내 5
-
날고 싶다 1
내 몸 뒤로 지나가는 바람을 느끼고 싶어 훨훨 퍼덕퍼덕 날고 싶다
드디어 적용탄이 나왔군요 가장 기대하고있었습니다 진짜 이칼럼은 제 수학의 시각을 넓혀줬으니 잘보겠습니다
저야말로 영광이네요! 궁금하신 점 있으시면 편하게 물어봐주세요 :)
선댓후감
미소변화율 항상 재밌게 보고 있습니다
감사드려요 선생님 :)
이거보고 주머니에서 공이나 뽑기로했다
왜 평면으로 수선을 안내리고 그런걸
동경일공의 공 아닌가용
역시 수학고수
사설 실모나 엔제에서 많이 써먹었는데 많은 분들이 얻어가셨으면 좋겠네요~^^
Sec(x)
짖짜 뇌를 꺼내서 저한테 이식하고싶어요
대 약 연
약선생님 좋은 글 감사합니당
저야말로 도움이 되었다면 기쁘네요
우와!
대 대 대
한의대 걸어두시나요
약연님 시.반(국가권력엔수생어쩌고)님이 이거좀 물어봐달랍니다
강의는 마지막에 나온다고 전해달라네요
https://youtu.be/9EOzb5wCSN4?si=3B1ZDrTpoDF_flU-
g'(x)를 수식으로 표현할 때, 미소변화량을 세로가 적당히 작은 직사각형으로 근사하였다고 생각하면 가로 × 세로인데, 도함수의 정의가 접선의 기울기이고, 접선의 기울기를 삼각비로 표현하면 아래 그림처럼 델타h/델타x로 표현할 수 있고, 델타S = 길이 × 델타높이 인데 양변을 델타x로 나눠 표현하면
넓이의 미소변화량 = 가로길이 × 도함수가 되는군요!
단! 이 경우는 기준선의 운동방향이 축과 평행하게 고정되어 있어 미세한 직사각형으로 근사, 위와 같이 도함수를 직관적으로 뽑아낼 수 있는것이지, 미소변화율 칼럼 1편의 극좌표에서의 근사에선 사용하기 곤란하군요..
헉 이걸 이제보다니..
미소변화율 3도 잘 보고 갑니다..ㅎㅎ
저야말로 도움이 되었다면 기뻐요
영광이에요
미소변화율에서 도함수값을 구할 때 이렇게 변수가 상수라서 일직선으로 움직이는 경우에는 길이가 넓이변화율 즉 도함수값임을 알겠는데 위 가형30번이나 저번 칼럼 ebs문제처럼 변수가 기울기라던지 직선이 아닐 때에는 길이=변화율(도함수값)이 성립하는지 아니면 어느정도 바례하지만 정확히 일치하진 않는 건지 궁금하네요
지난 칼럼의 경우 아래 이미지처럼 기울기를 조금씩 키우며 미소변화량을 닮음 삼각형(혹은 부채꼴)로 "근사"하였기에, 도함수값을 정확히 추출할 수는 없지만, 증감 변화의 경계가 되는 극값을 찾기는 가능한 것이에요.
다만, 위 사관학교 문항 혹은 이번 칼럼의 문항처럼 미소변화량이 축과 평행/수직한 경우에 한해서 극값조사와 더불어 도함수값을 길이로 추출할 수 있는것입니다.
:)
궁금증이 해결되셨기를 바라며, 혹시 더 궁금하신 점 있으시면 편하게 물어봐주세요