[칼럼] 수시 논술/면접(feat. 연대) 박살 내고 합격하는 꿀팁?
안녕하세요. 어수강 박사입니다.
오늘은 연세대학교 면접/구술 기출문제(2019학년도)를 예로 효과적인 공부 방법에 대해 포스팅 해보았어요.
알아두면 당장 내일 논술 시험 뿐 아니라, 내신 및 수능을 포함한 모든 시험에 적용 가능한 꿀팁입니다.
제대로 익혀두면 처음 보는 생소한 고난도 문제를 푸는데 크게 도움이 될거에요. 그러면 안정적인 고득점에도 도움이 많이 되겠죠? 상위권 또는 상위권을 목표로 치열하게 공부하는 학생이라면 크게 도움이 될테니 꼭 보세요!!ㅎㅎ
문제는 다음과 같습니다. 학생이라면 포스팅을 보기 전에, 문제에 대해 충분히 고민해 볼 것을 강력하게 권장합니다.
(참고로 이과 학생용 문제입니다. 과학공학인재계열/IT명품인재계열)
이에 대한 해설 및 풀이는 아래 링크에 있습니다 :)
연세대학교 기출문제 풀이 링크 : https://blog.naver.com/math-fish/223218902405
여러분의 합격을 진심으로 기원합니다!
그럼 다음에 또 만나요!! :)
PS. 내용이 도움이 되셨다면 "좋아요"나 "덧글" 등 많은 "관심" 부탁드려요 ㅎㅎ
좋아요나 덧글 등 반응이 많은 내용 위주로 포스팅을 더 해보려고 합니다. 감사합니다!
-----------------------------------------------------
아래의 "거의 모든 문제에 적용 가능한 치트키 2편"이
"문자가 여러 개일 때, 무엇을 문자로 볼 것인가?"
에 대한 내용이라면, 오늘 연세대학교 기출 문제 풀이는
"문자의 개수와 식의 개수"
에 대한 내용으로, 치트키 1편, 2편의 후속 "치트키 3"이기도 합니다!!
또한 이 치트키 1, 2, 3은 모두 전자책 "서울대 박사가 알려주는 수학의 비밀"에서 강조한 공부 방법을 적용한 예시일 뿐이고요. 이 책에서 강조한 공부방법을 모든 단원 및 모든 문제에 적용하고자 노력하면~ 큰 도움이 될거에요 :)
1. 거의 모든 문제에 적용 가능한 치트키 1편 : https://orbi.kr/00062136893
2. 거의 모든 문제에 적용 가능한 치트키 2편 : https://orbi.kr/00062194726
3. 서울대 박사가 알려주는 수학의 비밀 : 첫 번째 비밀 - 집합 : docs.orbi.kr/docs/10846/">docs.orbi.kr/docs/10846/" target="_blank">docs.orbi.kr/docs/10846/" target="_blank">docs.orbi.kr/docs/10846/" target="_blank">docs.orbi.kr/docs/10846/" TARGET="_blank">https://docs.orbi.kr/docs/10846/
4. 서울대 박사가 알려주는 수학의 비밀 : 두 번째 비밀 - 명제 : docs.orbi.kr/docs/10847/">docs.orbi.kr/docs/10847/" target="_blank">docs.orbi.kr/docs/10847/" target="_blank">docs.orbi.kr/docs/10847/" target="_blank">docs.orbi.kr/docs/10847/" TARGET="_blank">https://docs.orbi.kr/docs/10847/
5. 서울대 박사가 알려주는 수학의 비밀 : 세 번째 비밀 - 연산 : docs.orbi.kr/docs/10913/">docs.orbi.kr/docs/10913/" target="_blank">docs.orbi.kr/docs/10913/" target="_blank">docs.orbi.kr/docs/10913/" target="_blank">docs.orbi.kr/docs/10913/" TARGET="_blank">https://docs.orbi.kr/docs/10913/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
킹치더 갓..
-
설명절 시작 0
친가댁으로 출발
-
수1, 미적 풀고있는데 둘다 작년보다 이상해짐요...
-
무슨레이드를만든거야
-
바로 라흐마니노프 피아노 협주곡 2번입니다 1악처은 처음에 강렬하게 휘몰아친 다음...
-
오르비 일어나 2
-
이상형 떠올렸음 8
뭘해도 잘했다고 칭찬해주는 사람임
-
오르비잘자 3
-
여전히 내 눈이 틀림없다면 당신은 영광의 항구에 이르겠지 0
ㅇ. 아 졸려 오르비 오늘도 좋은꿈꾸세요
-
의대25학번을 위한 흉부외과가 멸종한 이유(가치기반지불제) 0
흉부외과 의사가 사라진 이유는 너무 많지만 못 들어봤을 얘기를 준비했다....
-
나머지 30%는 질이야
-
목차 0. 자기소개 1. 고등학교 2학년, 3학년 2. 재수 3. 삼반수 들어가기에...
-
돔황쳐
-
인원이 채워질진 모르겠는데 최대 10명
-
10시에 깨어있을걸 만원 날렸내
-
그냥 머릿속으로 초딩 알몸 떠올리는 것부터가 생리적인 거부감 들지 않음? 단순히...
-
이궈거든ㅋㅋ
-
기차지나간당 8
부지런행
-
늦게 자지말기 1
둘둘
-
얼버기 2
반가워용
-
지구과학은 많이 안 빠진 듯 한 거 같기도 하고 국어가 21000명 투표에...
-
잘햇으면 좋겟다... 개떨리네 진ㅁ자
-
평범한 우울글 4
죽을 깡도 없으면서 자살하고 싶다는 생각이 드는건 왜일까 세상 일은 마음대로 되지...
-
피곤해 0
윽
-
본인 22 여친 22이고 사권지 500일 넘었음 여친이 아는 사람 소개로 고3...
-
다 잠들었나 9
고요하군아
-
얼버기 5
-
오야스미 0
네루!
-
수능끝나고 할거 3
수능보기
-
설의 농어촌 정시 오르비에서 나온 고득점자 혹시 몇점인지 아심? 아님 연의 고의...
-
아무랑도 말 안해야하나요? 분위기 안좋은학교라서 저도 공부 안하게될까봐.. 다들 어떻게하셨을까요
-
이유도 부탁 ㅜㅜ
-
머리 크기에 비해 키가작다
-
너무 많아서 계산 포기
-
여기사 진짜 친구없는건 나밖에업구나...
-
오르비는 1
영어로 오르비
-
오르비가 죽었어 2
아니야 아직 따뜻해
-
애플워치 ㅈㄴ 갖고싶다 수영할때 끼면 ㅈㄴ 좋은데…
-
리세계 이거 구하는거 개귀찮아서 때려침
-
새르비감성이좋음 0
그래서 새벽에만 오르비함
-
웹툰 0
살인예정자 흥미진진한걸
-
배웠어요 불교대학답게 쟈한테 깨달음을 줬어요 건동홍 서연고 서성한 중경외시
-
풀커리 타는 거 어때욤
-
할머니댁가면 할게 그것밖에 없을것같아
-
0 3
45 957
-
잘자요 1
졸려..이젠진짜 자야겟어요 잘자요
-
컨관님 너무해..
[문제 2]같은 문제는 그냥 연세대틱하게 계산이 더러운 연립방정식 문제이긴 한데 이제 좀 더 확장시켜서 0 <= k <= n-1에 대해 x^k f(x) dx의 적분이 0이라는 조건이 있다하면 n차 다항식인 f에 대해 저 조건은 ( 1/(1+k), 1/(1+k+1), ..., 1/(1+k+n) ) 과 f의 계수 벡터간 내적이 0이라는 것이니 서로 직교한다로 해석할 수 있고 결국 적당한 초기벡터로 저 벡터들에 대해 그람-슈미트 직교화를 수행하는 것이라고 생각할 수 있겠네요
다항함수로 접근하면 쉽게 풀리죠. 계산 문제로 떨어지니까요.
그런데 다항함수란 조건이 없고, 이과문제이다 보니 (삼각함수 등 주기나 대칭인 함수들을 많이 다루고 난 뒤라 그런지)
이과 학생들에게 풀려보면~ 다항함수에 대해 생각하기보다, 주기함수나 대칭인 함수들로 짜맞추는 경우가 많더라고요. 이러면 체감난도가 무척 높아지는거 같아요.
필연적으로 위 문제를 올바르게 풀 수 있는지가 관건일거 같아요 :)
물론~ 쉬운 문제에서부터 배운 것에 근거해서 문제를 분석하고, 이를 바탕으로 논리적으로 사고해서 푸는 연습을 하면 고난도 문제도 무난하게 풀 수 있죠 :)
이렇게 하려면 어떻게 공부해야 하는지에 대한 구체적인 예시로 위 문제를 분석해 봤어요 :)
아 그리고 쓰신 글들 잘 보고 갑니다 :) 체계적인 접근 방법을 설명해주신게 좋네요
감사합니다 :)
좋은 하루 되세요~