[칼럼] 현XX 선생님이 알려준 계산 실수 줄이는 방법
나는 학창 시절 계산 실수를 정말 많이 했다.
그래서 항상 고민했다.
어떻게 하면 계산 실수를 줄일 수 있을까?
그리고 드디어 계산 실수가 생기는 근본적 원리를 깨달았다.
덕분에 상위 5%의 계산 능력을 갖게 됐다.
나는 이 원리를 잘 이해하고, 활용한다면,
계산 실수를 압도적으로 줄일 수 있다고 생각한다.
거짓말 같은가?
이 상태로 글을 시작하면, 뒤로 가기가 너무 많이 생길 것 같으니
권위자의 말을 빌려오겠다.
우선 이 글은
뇌 과학, 인지 심리학의 거장인 대니얼 J 레비틴의 [정리하는 뇌]를 기반으로 하고 있다.
누군지도 모르고 관심도 없을 것 같으니, 익숙한 인물을 예로 들겠다.
내가 설명할 원리를 이해하면,
현XX 선생님이 항상 해주시던 말의 진짜 의미를 파악 할 수 있다.
예를 들면,
"쉬운 문제만 풀지 말고, 어려운 문제도 풀어야 한다."
"최악의 상황을 가정한 실모를 풀어야 한다." (킬X 캠프)
"예외를 두지 말고, 모든 경우의 수를 대비해야 한다."
등등...
사실 이 말들이 계산 실수를 줄이는 방법들이다.
전혀 관련 없어 보이는가?
서론이 길었다.
결론만 말해주면,
'주의력을 효율적으로 사용'해야 한다.
주의력?
실수를 줄이는 방법은 간단하다.
주의력을 효율적으로 사용하면 된다.
효율적으로 사용한다는 것은,
'불필요한 곳에 주의력을 사용하지 않는 것'을 의미한다.
주의력이라는 개념이 너무 추상적으로 느껴질 것이다.
예를 들어 보자.
어떤 학생의 주의력 총량이(100)이라고 하자.
문제를 읽으며, 어떻게 풀지 고민할 때는
문제 해석(80), 문제 풀이(20)에 주의력을 사용한다.
문제를 다 읽고 난 뒤, 어떻게 풀지 구체적으로 고민할 때는,
문제 풀이(100)에 주의력을 사용한다
이후 풀이 방법을 떠올리며, 계산을 시작한다.
문제 풀이(10), 계산(90)에 주의력 사용한다.
그런데 만약 계산을 하다, 계산이 복잡해져 압박감을 느낀다면,
문제 설계(10), 계산(40), 압박감(50)으로 주의력이 조정된다.
이 경우 계산에 투자하는 주의력이 줄었기 때문에, 당연히 실수가 생긴다.
실수를 줄이기 위해서는, 주의력 총량을 키우는 것이 좋다.
하지만 안타깝게도 주의력 총량은 쉽게 바뀌지 않는다.
타고나는 영역이다.
따라서 우리는 정해진 주의력 총량 안에서, 뇌를 효율적으로 사용해야 한다.
주의력을 잡아먹는 흔한 케이스 2가지
위 예시에서 계산 실수가 생긴 이유는 압박감(50) 때문이다.
이처럼 우리가 문제를 풀다 실수가 생기는 대부분의 이유는 감정 때문이다.
자주 일어나는 두 가지 케이스를 살펴보자.
Case1) 문제 풀다 막혔을 때
이 케이스는 가장 흔하다.
시험장에서는 못 푼 문제를 집에서 풀어보면 풀리는 이유이다.
'아직 12번인데 문제가 안 풀려, 어쩌지...'
'쉬운 문제 같아 보이는데, 왜 문제가 안 풀리는 거야...'
이런 불안감은 문제에 집중하지 못하게 한다.
주의력 과부하가 생기고, 계산에 주의력을 투자하지 못한다.
Case2) 계산이 복잡해질 때
문제를 어떻게 풀어야 할지는 알았는데, 계산이 복잡해지는 경우다.
근본적인 원인은 Case1이랑 비슷하다.
감정 때문이다.
보통 평가원 문제에서 계산이 복잡해지면, 의심을 먼저 한다.
'이렇게 푸는 거 맞아?'
'잘못 풀고 있는 거 아니야?'
이런 불안감은 주의력을 잡아먹는다.
계산이 가뜩이나 복잡해 집중해야 하는데,
불안한 상태에서 계산을 하면 당연히 실수가 생긴다.
주의력을 효율적으로 사용하는 문제 풀이
정리하자면 계산 실수가 생기는 이유는
감정이 불필요하게 주의력을 차지하기 때문이다.
감정을 제거하면 계산 실수가 줄어들겠지만,
우리는 기계가 아닌 인간이다.
감정을 제거할 수는 없다.
따라서 우리의 한계를 인정하고 방법을 찾아야 한다.
내가 찾은 방법은 두 가지다.
1. 계산 효율화
2. 익숙해지기
아까 예시로 돌아가 보자
문제 설계(10), 계산(40), 압박감(50)에서 계산 실수가 생겼다면,
해결하기 위한 방법은 두 가지다.
계산(40)으로도 계산 실수를 하지 않으면 된다.
이는 계산 효율화를 통해 가능하다.
또는
압박감(50)을 압박감(20)으로 줄이면 된다.
이는 압박감을 느끼는 상황을 많이 경험해 보면 된다.
인간은 상황에 익숙해질수록 감정적 반응이 줄어든다.
따라서 감정적으로 반응할만한 상황을 미리 미리 경험해보면 된다.
이 방법이 현XX 선생님 말의 진짜 의미라고 생각한다.
마무리
당연히 계산 실수가 일어나는 이유는
오늘 설명한 것 외에도 너무 많다.
계산 습관, 풀이를 작성하는 방식, 사고 회로, 성격 등 너무 많은 요인이 존재한다.
이 모든 것을 이 글에서 설명할 수는 없으니,
이 글이 반응이 좋다면, 이후에 작성하도록 하겠다.
화이팅!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
모두 기출에 출제된적이 없다고가정, 시험시간은 80분이라고 가정함. 이외에...
-
ㅈㄱㄴ
-
메가쌤들 조교 2
갑자기생각났는데 조교할라면 그 과목 수능다맞아야됨? 그조건이 뭐임? 뭐테스트보나...
-
근데 심장은 떨림
-
날씨 개따뜻함
-
뿌듯하기보다 기출이 이렇게 없나? 싶음
-
생윤 난이도 1
갑자기 궁금한데 생윤이 뒤지게 어렵게 나오면 기출만으로 1등급 맞기 불가능한가요??...
-
공부: 아야!
-
아 자야하는데 아 근데 요즘 퇴물돼서 진짜 아무도모름
-
1906보디도?
-
거긴 또 다른 세계인것같음
-
타원은하였나 무슨 은하 등광도선입니다 솔직히 이걸 문제로 낼 예정은 없어서.....
-
사실1학년이어도말이안됨..
-
전한길 쌤 참 멋지고 좋으신 분이네요 제가 하고 싶은 말을 다 해주시는 것 같네요 3
1. 경상북도에 있는 한 도시에서 1970년에 출생하였다. 2. 지리학에서 학사...
-
대실모시대에 이구동성으로 강k를 지목하니 궁금해짐
-
https://orbi.kr/00069663711 맥주 질문이나 전적대 질문이나...
-
난이도 어때요 맨날 더프만 보다가 이투스는 처음이네
-
너무 큐브글 자주 써서 이게 마지막이 될 것 같아요 (어짜피 수능 끝나면 큐브...
-
하..................... 오늘도 실모 연계 기출 공부해야지......
-
없어졌다죠 오르비 포인트 검색하면 나옴
-
작수도 비왔는데 하루종일 어두컴컴하겄다 ㅋㅋㅋ시험보기엔 딱좋긴할듯
-
2학년 정시파이터입니당.. 25년대비 강의 들어뒀는데 26년대비 같은 강의 똑같은거...
-
오늘 실모 정산 1
이감 6-4 94 히카 31 88 강k 85사만다 1-1 44 사만다 1-2 41...
-
옯김이라고 김에 명란젓 붙어 있어서 짱맛탱구리였음 옯김이라고 검색하면 나옴
-
지금도 계실까요..?
-
논리학 얘가 인문 국가권력급 소재긴 한데
-
2년정도 외부일 갖다오시다가 이번에 돌아오신 교수님 계시는데 그 분이 유명한 지문...
-
탐구절사필수인데 6월에맞추고 9월에 못맞췄음....11덮은 꽤 괜찮아보이긴하는데 제발 ㅜㅜㅜ
-
오르비 대학 뱃지 가격 10
수능 응시료 + 대학 원서비
-
설경을 가고 설로를 가서 중앙지검장 국회의원 대통령이 되고 싶다
-
Somewhat 그런 Schema생기면 国語 독해速度 will rise 국어 Score 오른다
-
질문받겠습니다 15
감사합니다.
-
출제 한걸까...? 부등식을 대하는 태도를 알려주려고 낸걸까...?
-
빨리 가능하다고 해주세요 제 성적 보시고 가능한 객관적인 이유 들어서.. 이제부터는...
-
의뱃 39900원 치뱃,한의뱃,약뱃,수의뱃,설뱃 29900원 연고뱃 19900원...
-
국힙 고트는 누구임 18
진짜 누구지
-
너는 평생 짓밟으며 살아. 머지않은 어느날 너의 진심도 누군가에게 짓밟히겠지...
-
수능 출제를 보통 1-2달 전에 하지 않나여 그래서 교수님들 실종되는 거고...
-
미미미누 개떡상이네
-
그쯤에 100일 전으로 돌려보내주고 열심히 하라 그러던데.. 돌려보내줄때가 됐는데...
-
그게 나야 바 둠바 두비두밥~ ^^
-
한의대 중에서 입결이 가장 낮은 한의대
-
내가 만드는 거였네..
-
확통이 공감ㄹㅇ 10
2,3점짜리 이항정리에서 식 2개면 식은땀남 27번 막히면 살자마려움 4점짜리...
감사합니닷!
완전 좋아요! 계속 써주세요
넵 감사합니당~
감사합니다~
제가 최근에 깨달은 거랑 비슷하네요 계산이 복잡해지면 계산에 대한 확신이 없는 채로 계산하니까 실수하더하고요 ㅋㅋ 그래서 계산이 복잡해져도 답이 나온다는 확신을 가질때 까지 문제 다시 살피고 확신이 들면 계산 하는 식으로 하니까 확실히 실수가 줄었습니다
넵 정확합니다.
풀이, 계산에 대한 불안감이 주의력을 잡아먹는 대표적인 원인입니다.
때문에 항상 의식적으로 풀이, 계산을 진행해야 합니다.
이게 무조건 정답이야! 라는 생각보다는,
틀려서 막히더라도 돌아올 수 있는 분기점을 만드는 것이 중요합니다.
이를 위해서는 내가 가고 있는 길을 항상 명확하게 의식하는 것이 중요합니다.
수학에서 메타 인지가 중요한 이유기도 하죠!
이미 스스로 깨닫고, 적용하는 것을 보니 대단한 것 같습니다.
저는 스스로 깨닫지는 못했던 것 같습니다.
지금처럼 꾸준히 노력하시면, 성적이 안 오를 수 없다고 생각합니다.
화이팅!
감사합니다앗!