미적분 배우신 분 아무나 제발 들어와주세요....
이제 막 미적분 배우고 있는 고등학생인데요.... 급수 파트에서
항의 부호가 교대로 변하는 급수는 짝수항까지의 부분합이랑 홀수항까지의 부분합이 같으면 그 값으로 수렴하고 같지 않으면 발산한다고 배우잖아여...?
이렇게요!!!
근데
문제로 이게 나왔는데요... 짝수항까지의 부분합이랑 홀수할까지의 부분합이 다르니까 발산한다고 해설되어 있는데
사진에서 빨간색으로 표시한 제 풀이처럼 그냥 부분합 Sn의 극한 구하는 방식으로 구하면 부분합의 극한이 -1/2가 나와서 수렴한다고 나와요... 어디서 잘못된 걸까요 제발 알려주세요ㅠㅠㅠㅠㅠ
항의 부호가 교대로 변하는 모든 급수는 그냥 부분합의 극한을 구하는 방식으로 급수의 수렴/발산 판단을 하면 안되나요..? 그건 아닐테고ㅠㅠ 이 부분때문에 고전중입니다...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
거긴 또 다른 세계인것같음
-
솔직히 이걸 문제로 낼 예정은 없어서.. 웃자고(? 한 번 올려드려요
-
사실1학년이어도말이안됨..
-
전한길 쌤 참 멋지고 좋으신 분이네요 제가 하고 싶은 말을 다 해주시는 것 같네요 2
1. 경상북도에 있는 한 도시에서 1970년에 출생하였다. 2. 지리학에서 학사...
-
대실모시대에 이구동성으로 강k를 지목하니 궁금해짐
-
https://orbi.kr/00069663711 맥주 질문이나 전적대 질문이나...
-
수능 전에 금딸하심? 깔끔하게 오늘 치고 끝낼지 아님 그냥 안할지 고민중;
-
난이도 어때요 맨날 더프만 보다가 이투스는 처음이네
-
너무 큐브글 자주 써서 이게 마지막이 될 것 같아요 (어짜피 수능 끝나면 큐브...
-
하..................... 오늘도 실모 연계 기출 공부해야지......
-
없어졌다죠 오르비 포인트 검색하면 나옴
-
작수도 비왔는데 하루종일 어두컴컴하겄다 ㅋㅋㅋ시험보기엔 딱좋긴할듯
-
2학년 정시파이터입니당.. 25년대비 강의 들어뒀는데 26년대비 같은 강의 똑같은거...
-
오늘 실모 정산 1
이감 6-4 94 히카 31 88 강k 85사만다 1-1 44 사만다 1-2 41...
-
옯김이라고 김에 명란젓 붙어 있어서 짱맛탱구리였음 옯김이라고 검색하면 나옴
-
지금도 계실까요..?
-
논리학 얘가 인문 국가권력급 소재긴 한데
-
2년정도 외부일 갖다오시다가 이번에 돌아오신 교수님 계시는데 그 분이 유명한 지문...
-
탐구절사필수인데 6월에맞추고 9월에 못맞췄음....11덮은 꽤 괜찮아보이긴하는데 제발 ㅜㅜㅜ
-
오르비 대학 뱃지 가격 10
수능 응시료 + 대학 원서비
-
설경을 가고 설로를 가서 중앙지검장 국회의원 대통령이 되고 싶다
-
Somewhat 그런 Schema생기면 国語 독해速度 will rise 국어 Score 오른다
-
질문받겠습니다 15
감사합니다.
-
출제 한걸까...? 부등식을 대하는 태도를 알려주려고 낸걸까...?
-
빨리 가능하다고 해주세요 제 성적 보시고 가능한 객관적인 이유 들어서.. 이제부터는...
-
의뱃 39900원 치뱃,한의뱃,약뱃,수의뱃,설뱃 29900원 연고뱃 19900원...
-
국힙 고트는 누구임 18
진짜 누구지
-
너는 평생 짓밟으며 살아. 머지않은 어느날 너의 진심도 누군가에게 짓밟히겠지...
-
수능 출제를 보통 1-2달 전에 하지 않나여 그래서 교수님들 실종되는 거고...
-
미미미누 개떡상이네
-
그쯤에 100일 전으로 돌려보내주고 열심히 하라 그러던데.. 돌려보내줄때가 됐는데...
-
그게 나야 바 둠바 두비두밥~ ^^
-
한의대 중에서 입결이 가장 낮은 한의대
-
내가 만드는 거였네..
-
확통이 공감ㄹㅇ 10
2,3점짜리 이항정리에서 식 2개면 식은땀남 27번 막히면 살자마려움 4점짜리...
-
평가원에서 언급된 적 있나요? 사설에서 오늘 처음 알았음
-
밀려서 영어는 버렸는데도 계속 밀리네ㅜㅜ
-
오지훈 선넘네 1
이게 ㄹㅇ 문제로 나올까… 그리고 이럴땐 식현상에서 행성공전궤도 반지름이 별이...
-
살 쪘어 0
진짜 입시는 독극물임이 틀림없다 그걸 자의로 4번째로 들이키고 있는 나
-
오늘 업적 2
스러너 28번 풂+24번 26번 못 풂
-
수능끝나면 슬슬 등장할 글들입니다 1)문과로 돌려서라도 높은대학 가야됨...
-
이것은 저에게 하는 말이기도 해요,, 힘내세요 선생님,,
-
2023년 (수시) 서울대의대 수시합격 연세대의대 논술전형 수석합격 경희대한의예과...
-
부동산좀 공부하세요.
님이 계산하신건 짝수개일 때입니다. 세어보세요 ㅋㅋ 개념은 틀리지 않았습니다!
ㅠㅠ 그러면 저런식으로 부호가 교대로 바뀌면서 소거되는 모든 수열의 급수는 짝수항/홀수항 부분합으로 계산해야 하나요? 분수식의 급수계산에서는 그냥 부분합의 극한으로 구했는데... 어렵네요ㅠ
사실 저렇게 하는 것보다 살짝 잡기술로 짝수항 부분합만 계산한 뒤에, (님이 하신 것처럼)
홀수항들이 (합 말고) 0으로 수렴하는지 확인해보세요. 0으로 가면 자연스레 짝수항 부분합과 홀수항 부분합 수렴값이 같아지게 되고요, 저 문제와 같이 0이 아닌 수 (1)로 가면 달라져서 수렴 안하죠.
음.. 그러면 부호가 교대로 바뀌는 급수들은 그냥 부분합의 극한만으로는 수렴/발산 판별이 안되고 짝수항 홀수항 부분합으로 판단해야 하는데 말씀해주신 기술 등을 써서도 판별할 수 있다는 게 맞나요?
맞습니다. 잘 이해하셨네요! 부호가 바뀌면 짝수항 홀수항 부분합을 따로 구해야됩니다. 다만 제가 알려드린 기술?을 쓰면 더 편해진다는 거죠!
감사합니다!!!!!! 몇시간째 이것땜에 혼자 헤매고 있었는데 큰 도움 주셨어요ㅠㅠ 정말 감사합니다!!