미적 30번 푼 사람들 와바
끝나고 푼거임
맞음?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어: 수특 수완 검더텅 각 2회독 -> 1등급 영어: 수특 수완 EBS파이널...
-
노대 인문 어때요? 17
장학 왜케 맛있음 ㄹㅇ 목시 컷 오를 거 같아서 그냥 노대 갈까 싶은데 어떰뇨?
-
기하나 미적 하는게 낫나요? 지금은 문과라… 수학을 이과쪽으로 하고 사탐을 해도...
-
1년동안 8명가르쳤습니다,, 시급이 일반 알바에 비해 많이높아서 좋긴한데 가르치는게...
-
내인생계획 7
군대에서행정고시준비하기 일초에피셋합격 상초에2차합격 병장때최종합격 법률저널 인터뷰:...
-
이미지 관리 시작
-
공수2-1 8
매일마다는 아니어도 조금씩이라도 올리겠음
-
오늘 배영하다가 앞에 여성분 가슴을 실수로 찔렀는데 (손날치기자세로 다섯 손가락...
-
기원이 문제량 적다는 얘기가 있다하던데 상방 뚫기 용으로 강기원만한게 없나 반면...
-
말로 형용할수없을듯....
-
성인기념? 입학기념? 으로 지갑 팔찌 신발 가디건 목걸이 해서 740만원정도썼어욤...
-
수학뺴고다물어보셈
-
대학생분들 2
목표가 있나요?
-
오르비에 공유(?)해주실분
-
얘전에 봉사할때 정말 많아야 30정도? 눈으로 봤을땐 25정도 이지 않을까 하는...
-
ㅇㅈㅎㅈㅅㅇ 1
ㅇㅈ ㄱ
-
이러면 곧 키배터지나?
-
샤인미 N제 vs 한석원 4규 시즌2 기존 풀던 드릴/드릴드 끝나가서 풀어볼까...
-
26도 받으러 가야겠다 가서 국,수만 치고 나와서 점심먹어야지
-
근데그러면님들이싫어할거같애서
-
큰일이네 2
요즘너무늦게자는듯
-
아빠생일선물삿음 8
케이스도사고 삼케플까지들엇어 미역국도끓일거야
-
래브라도 리트리버 (?) 짱 귀여움
-
근데 금테를 달기에는 팔로워를 못 올리겠음 뻘글이나 써볼까요
-
이거 구라겟지 2
???
-
문과분들께 여쭤봐요 12
1. 혹시 고2때 사탐 몇과목 하셨나요 2. 과탐 진로선택과목도 하셨나요 3....
-
이쯤되니 의예과 더블링 어케 해결할 지가 궁금해짐 16
7년제? 유급은 진짜 전교 1-2등끼리의 싸움이라 비관 자살 나올 것 같음 26까지 받아버리면...
-
ㅇㅈ 0
메타열어줘
-
48명 남았네요
-
어느정도 안도함 실제로 그 덕에 비교적 편하게 본듯
-
어쩐지그댄내게말을안해요 허면그대꿈속으로날아가 살며시 얘기듣고올래요
-
https://orbi.kr/00026573385 낼부터 전단지 바로 만들어볼려고요
-
그랬었다구요
-
너 나이로 벌써 4수잖아 남자라서 군대도 가야되고 재수로 서강대까지 갔으면서 꼭 서울대를 가야겠니?
-
환급가능 대학에 올해 신입생으로 있는데 올해 수능보고 그냥 복학하면 환급 되나요?
-
어땠음...?
-
위험한 발언 10
발이 얼면 위험합니다 는 장난이고 개인적인 사견으로는 23 25수능처럼 남은 26...
-
하코다테 오릉곽 산책하려고 점 찍어뒀는데
-
그러면 역으로 반수로 딱 5.9개월치만하면 풀컨디션으로 수능장 입성 ㄱㄴ? 진짜 나...
-
ㄱㅂㅈㄱ 수학 오지게 파고 탐구 선택과목 정하기
-
지금 2-3분도 못 걷는 상태인데 지금 반수 박고 하루종일 의자에 앉아있으면 ㅈ될까요?
-
러셀에서 22수능을 풀었을 때 수1을 다 맞았다 수2까지 선행하고 러셀에서...
-
태어날때부터라면 너무 슬플거같은데
-
있으면 ㄹㅇ리스펙
-
지금쯤 헬스도 하고 알바도 하면서 행복하게 지냈을텐데……
-
할일 하며 지내면 되고 전적대 자퇴 준비하고 이래서 조발이 좋아
-
한 번 확인할까 그냥 덮어놓고 발표날까지 둘까
대충 ln갖고 치환 존나 때릴거 같은 문제,,,,
30번 끝나고 보니까 할만하네 다른거 버리고 이거풀걸
이제 지금까지의 두배 연산하시면댐...
연산은 계산기한테 시키고 싶다...
풀이 자체는 맞는거죠?
마자여
16이 답아님?
맞는데 전 시험시간땨 못풀어서 한번 풀이만 해본거에요
항 4개의 계수를 식 4개 이용해서 다 구해내면 되는 거 맞음??
간단하긴 한데 계산을 많이 해야하네;
사실 f의 세 정점이 y=x^2위에 있다는걸 활용해 인수 3개 정하고 시작하면... 여전히 계산 많음
1. (가) 조건이 험악하게 생겼지만 f'(x)/f(x)-1/x 이므로 적분식은 lnㅣf(x)ㅣ-lnㅣxㅣ=lnㅣf(x)/xㅣ로 식을 정리할 수 있고 f(3)=9f(1)임을 얻을 수 있다
2. (나) 조건에서 함수 g(x)는 미분가능하므로 극값을 가지면 g'(x)=0이다. 따라서 g'(1)=g'(3)=0에서 f(1)=f'(1)이고 f(3)=f'(3)
3. g(1)=0이므로 f(1)=1이고 따라서 f'(1)=1, f(3)=9=f'(3) 임을 알 수 있다
4. 사차함수에 대해 5가지 정보를 알기에 모든 계수를 결정할 수 있다. f(1)=f'(1)=1에서 f(x)=(x-1)^2*(ax^2+bx+c)+1로 식을 잡을 수 있고 f(0)=0, f(3)=9=f'(3)을 활용해 a=-1/4, b=7/4, c=-1임을 확인할 수 있다.
5. f'(2)=15/4이고 적분식을 [xf'(x)-f(x)]/x^2*g(x)로 바라보면 전자를 적분해 f(x)/x 후자를 미분해 g'(x)=f'(x)/f(x)로 바라볼 수 있고 식을 정리하면 f(3)g(3)/3-integrate f'(x)/x from 1 to 3을 얻을 수 있음. 계산하면 ...