벡터=좌표라고 생각하면 큰 낭패
[기하 선택자(또는 수리논술대비)를 위한 칼럼]
기하, 즉 도형에서 가장 중요한 것은 점이에요.
모든 도형은 점으로 이루어져 있기 때문이죠.
도형에 대한 연구는 고대 그리스 시절부터 아주 활발했습니다.
직선, 각, 삼각형, 원 등 평면도형에 대한 대부분의 성질은
무려 2천년전에 “유클리드”님이 다 정리해 놓으셨다죠.
그런데 미친넘천재 유클리드도
정의하지 못한게 하나 있으니
그것은 바로 '점의 위치'입니다.
우리가 중학교때까지 배우는 도형들은 위치가 없죠.
그냥 어딘가에 있는 삼각형, 원 이렇게 배우잖아요.
고등학교 수학에서
점의 위치를 나타내는 방법을 두 가지 배우는데,
첫번째가 좌표로 점의 위치를 나타내기
두번째가 벡터(두두둥장)로 점의 위치를 나타내기
이 두가지는 아예 개념이 달라요.
그림으로 표현하면 아래와 같습니다.
1. 점의 위치를 x, y 좌표로 나타내는 방법
익숙하죠?
모든 점의 위치를 원점을 기준으로 생각하는 것이죠.
생각해서 존재하는 데카르트님이 좌표평면을 떠올렸다네요.
2. 점을 가리키는 벡터를 이용해서 나타내는 방법
원래 벡터는 위치가 아니라 크기와 방향으로만 정의가 되는데
모든 벡터의 시점을 통일시키기로 약속하면 한 점과 어떤 벡터는
반드시 일대일로 대응이 되는거죠.
이걸 점의 위치벡터라고 합니다.
따라서 그냥 위치벡터가 아니라,
점A의 위치벡터, 점B의 위치벡터인거에요.
그럼 좌표로 하면 되지 뭐하러 굳이 왜 벡터로 점의 위치를??
이라고 생각할 수도 있겠네요? 그 이유는 뭘까요?
벡터로 하는게 편한 경우가 있어서에요.
좌표로 점의 위치를 나타내면 원점을 기준으로 해서
점의 위치를 절대적인 값으로 나타냅니다.
그런데 점의 절대적인 위치를 알고 싶은게 아니라
이 점이 쟤랑 걔 사이에 정확히 중간에 있어.
아니면 얘는 쟤랑 거리가 몇이래.
이런걸 표현하고 싶다면? 굳이 좌표가 필요없어요.
점들 사이의 상대적인 위치만 있으면 되니까요.
이럴 때는 벡터가 훨씬 편하네요.
예) 점P는 점 A와 점 B의 중점이다.
이걸
이런 식으로 표현할 수는 없겠죠?
그런데
벡터로 표현하면
이렇게 표현을 할 수 있어요.
점은 연산이 안되지만 벡터는 연산이 되니까요.
직선이나 원 같은 도형의 방정식도
위치벡터로 나타내면 훨씬 편리하답니다.
물론 벡터의 용도는 여러분의 상상 이상으로 훨씬 더 많아요.
여러분이 즐겨하는 게임에서
벡터가 광범위하게 활용되기도 하죠.
그리고 대학에서 배우는 벡터는
평면기하와 별로 상관이 없는 추상적인 개념이고....
설명하자면 끝도 없는데
일단 평면벡터만 생각해서 예시를 들어봤어요.
[결론]
여러분이 기하 선택자라면 (그래서 읽고 있겠지만)
위치벡터의 개념부터 제대로 잡고 시작하세요.
만약 위치벡터를 이해 못하면,,,
갑자기 나오는 벡터에,,, 도대체 이걸 왜 배우는건지,,,
삼각형 평행사변형, 그림놀이 열심히 하다가
갑툭튀 등장하는 내분점 공식같은걸 보면서 이건 또 뭐지...
배운건데 왜 또 나오지.... 그러다가 준킬러님 두두둥장
하시면 손도 못대는 경우가 생겨요.
기하에서는 30번 레벨 벡터문제까지
반드시 맞추도록 대비해야겠죠?
그래야 미적분 선택자에게 불리하지 않으니까요.
벡터는 확실히 잡고 갑시다!
------
여기까지는 정보성,
아래부터는 잠시 상업성을 띠는 점 양해부탁드리며...
[수업안내]
올해 기하는 수능 대비 현강이 별로 없는 듯 해요~
그래서 6평 대비 수업을 합니다!!
장소는 대치동 디오르비! 시간은 목요일 6시반부터!!
현장강의 + 라이브 입니다.
6평대비 3주 특강 <16416-기하>
이번 수업으로 기하, 특히 벡터에 대한 감이
확실하게 잡힐 거라는거 자신있게 말씀드릴게요.
지난 수업은 복습영상으로 수강가능하고요.
이번 수업 교재 뿐만 아니라 개념교재도 무료로 드립니다.
그동안 대충 알고 있던 개념을 완벽히 정리하면서
킬러가 체계적으로 풀리도록 만들어 드리는 수업이에요.
신세계를 경험하고픈 기하러는 다들 오세요.
제가 책임지겠습니다.
[16416 수강신청 링크]
https://academy.orbi.kr/intro/teacher/252/l
기하의 기초
평면도형과 도형의 방정식을 총정리하는
<아름다운 시작 - 도형>도 강추입니다!
[이승효T 특강 수강신청 링크]
https://academy.orbi.kr/intro/teacher/256/l
문의 : 디오르비 02-522-0207
칼럼이 도움되셨다면 좋아요와 팔로우 부탁드릴게요.
상승효과 이승효였습니다 :-)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
10년을 나쁜눈으로 살았어...
-
추억이다
-
고자전 고경 1
고자전이 공거리 필수로 해야하는걸로 아는데 고경 가면 공거리는 선택 못하는건가요??
-
https://i.orbi.kr/0001334997/ ㅠㅠ
-
올해는 제발 쫌 붙어라
-
절에 가서 매일 간절하게 비는 방법 밖에 없는듯 ㅋㅋㅋ 웃자고 하는 소리가 아니라...
-
커리큘럼 읽어봤는데도 감이 안잡히네
-
ㄱㄱ
-
ㅈㄱㄴ
-
노예 0
노예비
-
하제맑음컨설팅 정시상담 안내 오르비 입시원 하제맑음 예약 링크:...
-
이거외이럼 2
시립댄데 뭐가바뀌는ㄱ거지
-
재수 성공 기준 2
평백 몇 이상 올라야 성공했다 보는지요
-
24 23 22 순으로 18명모집/31번까지 추합 20명모집/21번까지 추합...
-
1. 일단 휴르비 한다.
-
포경하고 싶다 2
여자는 왜 못하는데? 남녀차별 아냐?
-
일단 올해 처음 모집하는거에서 나름 불안요소인게 1. 서강대식 인재가 이제 나다군...
-
의논 노예비면 2
추합 가능성 없죠? 어차피 안될 거 확인하러 들어가기 귀찮아서…
-
이번에 이준석 판결 7700만원 배상하라고 나왔네 진짜 변호사들 돈 버는거 보소 ㅋㅋㅋ
-
인하대 합격생을 위한 노크선배 꿀팁 [인하대25][등록금뽕뽑기] 0
대학커뮤니티 노크에서 선발한 인하대 선배가 오르비에 있는 예비 인하대생, 인하대...
-
아니 너무추워 4
손이 곱아서 글이 잘 안써지네
-
와...
-
크아악제발
-
가끔씩 달력이 오류나서 인터넷도 속임 12월16일 수요일 뭐지다노
-
고1내신망 5
그냥 지방일반고인데요 수학영어국어사회과학한국사 212322 였는데요 1학기에 이번에...
-
후
-
여캐 투척 5
현재 최애캐
-
직원이 살펴보고 어 이상하다 하고 컷 수정하기도 함??
-
bdd라고 생각해요 ogn에서 라디오 틀듯이 틀어놓구 꾸벅꾸벅 졸다가도 가끔씩...
-
메인글머고 3
-
최저 열심히 준비했고 노력에 미련 없어서 현역으로 가려고 했는데 최저 못 맞춰서...
-
맞지?
-
셤보러 가는 중… 내가 지금 뭐하는거지
-
다음 업데이트가 왜 16일임 ㅋㅋ
-
개춥다
-
왜 교육부와 대학이 정시 확대를 막았는지 이제 알겠다 0
지방대 비중이 높은 의대입시에서 보는 수시비율과 인서울 대학 비중이 높은 일반과...
-
맞아 그건 사실이야 1년 더 살면 된다고? 야 +1 안 한 애들이 더 오래 살걸
-
운영자가 안보길 빌어야 하실듯 미리 인사를..
-
옯붕이 항문개통당하고옴 15
탈모진단보다 이게 더 뭔가뭔가네
-
한의대만 가능한가요 아니면 약대도 가능한가요? 남자기준입니다 사탐+과탐 조합이랑...
-
왜 3합가능세계를 보여주지? 그러지마라
-
그냥 딸깍하면 끝인 걸 일처리 한 번 더럽게 느리네 얼른 발표하라고
-
삐졌음 8
-
시립대 변표 6
변표뜨고 진학사 1등 유지중인데 이젠 진짜 발뻗잠 가능한가요
-
라고 하고 싶지만 할 사람이 없으시겠지 ㅠㅠ.. 아무튼 끝나서 좋네요!
-
대성마이맥 군대로 택배 안된다던데 어떡해하죠?
-
순하게생기거나 착하게생겼는데 잘생긴건아님 퐁퐁남 관상
-
맞팔해줘요 2
롤얘기밖에 안하긴하는데 그래도 해줘요
-
대학 붙고는 계속 학교 뱃지 달고 있었는데 요즘은 레어해서 다시 달고 다니기 괜찮은 듯요
벡터를 변화량이라고 인식하니까 그 의미가 와닿더라고요. 생긴건 가만있는 선분인데 움직임을 표현할수있다니. 단순한 표현 하나로 복잡함을 정리하는 수학의 아름다움이 느껴집니다.
단순한 표현 하나로 복잡함을 정리하는 수학의 알흠다움. 크~
우왕 미적해야징
대박 재밌겠다... 내가 재수했다면 바로 기하했다
쪽지 드려도 되나요
네~
쪽지 답장 부탁드립니다
수학과는 사학과네요..