[박수칠] 역함수의 미분법 이해하기
수학영역 A형에 비해 B형에서는 다양한 미분법/적분법을 배우게 됩니다.
그 중에 살~짝 어렵고 헷갈리는 것이 '역함수의 미분법'인데요,
이 글을 통해 간단명료하게 설명해드리겠습니다.
1.일단 역함수의 미분법은
(1) x=f(y) 꼴의 함수를 미분하기 위한 것입니다.
(2) 그래서 역함수의 도함수를 구하는데 이용되죠.
2.역함수의 미분법에 관련된 공식은 다음 두 가지가 있습니다.
각각의 증명은 다음과 같습니다.
(1) 의 증명
(2)의 증명
3.그럼 공식 2-(1)을 이용해서 도함수를 계산해봅시다.
(1) 주어진 함수를 x=f(y)의 꼴로 표현하기 위해 양변을 n제곱합니다.
(2) 양변을 y에 대해 미분합니다.
(3) 를 이용하기 위해 양변을 역수로 바꿉니다.
(4) 따라서 주어진 함수의 도함수는 다음과 같습니다.
(1) 역함수를 구하기 위해 x, y의 위치를 바꿉니다.
y=f(x) 꼴로 정리하지 않아도 위 식은 이미 역함수입니다.
(2) 양변을 y에 대해 미분합니다.
(3) 를 이용하기 위해 양변을 역수로 바꿉니다.
이 식이 바로 역함수의 도함수입니다.
역함수 를 y=f(x)의 꼴로 표현하기 어렵기 때문에
위의 도함수를 굳이 x에 대한 식으로 나타낼 필요는 없습니다. 또한
역함수의 그래프 위의 점 (3, 1)에서의 미분계수를 구하고 싶으면
이 도함수에 y=1을 대입하면 됩니다.
4.의 의미
앞에서도 언급했다시피 함수 y=f(x)와 그 역함수가 y=g(x)가 모두 미분가능하면
이 성립합니다. 이 식에서 (x, y)는 역함수 y=g(x) 위의 점을 의미합니다.
만일 점 (a, b)가 역함수 y=g(x) 위의 한 점이라면 다음의 식이 성립하겠죠.
이때, g'(a)는 역함수 y=g(x) 위의 점 (a, b)에서의 접선 기울기,
f'(b)는 함수 y=f(x) 위의 점 (b, a)에서의 접선 기울기를 의미합니다.
따라서 위 식은 두 접선의 기울기가 서로 역수관계임을 의미하겠네요.
그럼 문제 하나 풀어봅시다.
이 문제는 2010학년도 9월 모평 가형 27번 문제입니다.
f'(a)와 g'(a)를 구하는 문제인데, 역함수의 도함수는 구할 필요가 없고
다음과 같이 를 이용해서 역함수의 미분계수만 구하면 됩니다.
(1) f'(a)의 계산
함수 f(x)의 도함수 으로부터
(2) g'(a)의 계산
g(a)=b라 하면 로부터
(3) 답 계산
g(a)=b로부터 f(b)=a이므로
이다. 이를 이용하면
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
파이팅!
-
형사 피의자가 영장 실질 심사 시 국선변호인 쓸 때도 0
사선 변호인이 선임 안되었을 때 법원이 무조건 국선 변호인을 선임해 주어야 하나요?...
-
수학 수완실모만 깨작댐 국어영어탐구 사지도 않음 탐구 수완실모 오늘 날잡고 푸는 건 어케생각함
-
벽돌 왜던진거임? 문 열줄 모르나? 아님 잠김?
-
남자출입금지였다는데 그 뒤에 배달기사만 예외적으로 출입허용했었다네요 이유는...
-
한번호로 찍는거랑 문제마다 다르게 찍는 것중 뭐가 나을까요?
-
화작 ^^ 이럴줄알았으면 다른거 풀었음ㅋㅋㅋ 그냥 쉬운거풀고 멘탈관리할걸
-
저는 지적학과를 희망하는 학생인데 일단 청주대는 떨어졌고... 목포대는 우주상향으로...
-
경제: 법보다 재밌음 (근데 못함) 서양철학: 동양철학보다 오조오억배 나음...
-
저는 그동안 33 34 버렸는데 올해는 37 39 버리고 있어요
-
내가 하고 싶은거 하고 살고 싶다
-
Bic라이터로 준비해야하나
-
에타에 영상 몇개 올라와서 보고왔는데 아무 상관도 없는 교수님한테 욕하고...
-
ㄹㅇㄱㄲ
-
오르비특) 10
아무도 관심을 안주면 저런새3끼들도 원하는 반응이 안오니까 적당히 치고 넘어갈텐데...
-
고전소설남장여자 2
VS 보추 성별 모티프는 지금도 이어지네요...
-
와 재밌겠다 2
-
12까지 인가요???
-
눈풀안되면걍제끼고
-
뭘 요구하면서 하는거에요..? 학교측에서도 그냥 비전 회의 중 나온 의견들 중...
-
수학 마지막공부 0
어떻게 해야할지 모르겠네 어제까진 실모 풀었는데 오늘 내일은 뭘 해야될까요? 기출?...
-
처음들어봄
-
7회차 거의 다풀어본 결과 78~83 뜨는데 수능2가능할까요ㅜ개어려운디
-
교수님은 공정성 추구와 이기주의를 구분 못하시나요? 전직 대통령에 의해 만들어진...
-
영어 찍특 질문 1
영어 보면은 다들 찍특 많이 보던데, 내가 푼거중에 한 번호가 유독 없으면 그걸로...
-
ㄹㅇ
-
이모다 첨부파일 0
낼 하나 풀건데 이모다 첨부파일 실모 중에서 하나 뽑아 풀건데 젤 어려운 게 몇회차...
-
진짜 딱 수능이 맵게 나오면 이정도일거같네요 문제 너무 좋았고 솔직히 여타 대기업...
-
수능장 텀블러 1
유대종 쌤 종강 선물로 텀블러 받고 잘 쓰고 있어서 들고 가려고 하는데 들고 가도...
-
늙어서 몸이 그걸 구현을 못함
-
많이들 하실 것 같고 많이들 구하실 것 같은데 언제 한 번 칼럼으로도 쓰겠지만 국어...
-
이 신발 이쁨? 14
지인이 보내준 착샷 첨부
-
9월 정철나왔는데 또 내겠어요? 예상댓글: 21수능
-
11덮에서 나왔으니까 수능에는 안나오는건가 ?
-
저 현역인데 민증 잃어버려서 학생증 들고 갈려 하는데 앞에 사진있고 뒤에 생일 이름...
-
가채점 일단 무조건 해야하긴 하는데 가채점표 사서 붙일까요 그냥 수험표 뒤에 벅벅 줄 그어서 할까요
-
내가과외하고싶은이유가 23
진짜2,3에서1나올려면 어떻게해야하는지가보여서그럼 그냥저렇게만하면되는데...
-
사문 또래집단 2
또래집단은 왜 자결이 아니에요?
-
정법 실모 화나는 점 12
웨 정치 참여 주체가지고 변별하려고 하냐고 그리고 평가원도 그렇고 너네 수행평가 좀 작작해 아오
-
감기기운이.. 1
열나거나 뭐 증상이 있는건 아닌데 목이 살짝 간질간질.. 그냥 쉴까요 작년엔 수능...
-
아이민은 꽤 됐네..? ㅋㅋㅋㅋㅋㅋ 일아니자마자 도파민 채워지네
-
HOLY한 유지민
-
사문 질문 5
소수의 백인이 지배하는 서국에서 흑인이라는 이유로 차별 받는 데 왜 주류집단에 의한...
-
아직 채점은안했는데 수학이 개조진것같음 그냥 오답만하고 점수 무시하고싶은데 그게...
-
ㅜㅜㅜ 5
-
고논 문자 왔네 1
논술공부 거의 안 했긴 한데 뭔가 떨린다
-
ㅋㅋㅋㅋㅋㅋ 14번 진짜 풀이 단계 단계 넘어갈때마다 ㅈ도 개연성 없고 걍 어이가...
-
지구 개념 2
oz 필기노트 보는데 충돌대(대륙판 대륙판 충돌)는 판의 섭입과 소멸 x 라는데...
-
연결 어미 ~를 사용하여 ~를 나타냄에서 앞에껄 판단근거로 내게 한적있음? 예를...
라이프니츠 미분법의 장점이죠ㅋㅋdy/dx를 분수꼴(?)로 생각할 수 있다는!
그렇죠! 합성함수의 미분법(연쇄법칙), 매개변수로 표현된 함수의 미분법, 매개변수로 표현된 함수의 이계도함수, 더 나아가면 치환적분도 분수로 간주할 수 있구요~ ^^
감사히잘보고갑니다
감사합니다~~^^
명쾌합니다!!!
Dy/dx를 어떻게 읽죠? 디엑스분의 디와이거 아니라던데여
그냥 디와이디엑스 라고 읽으시면됩니당~