문제는 함수야, 이 바보야
안녕하세요.
꿈과 희망의 상승효과
수학강사 이승효입니다.
일단 바보라고 해서 죄송합니다.
여러분이 바보가 아니라는건 잘 알고 있죠.
[제목 "문제는 함수야 이 바보야" 는
예전에 미국 대통령 선거에서 캐치프레이즈로 쓰였던
"문제는 경제야 이 바보야" (It's the economy, stupid)
에서 따온 것입니다.]
오늘의 주제는 미분과 함수입니다.
미분이 참 어렵죠.
그놈의 미분이 도대체 뭔지,
예시를 들어서 설명해 볼게요.
1. 미분은 MRI검사입니다.
우리가 몸이 아파서 병원에 가게 되면
여러 가지 방법으로 우리의 몸상태를 확인하게 될거에요.
의사 입장에서 환자를 진찰할 때,
상태가 어떤지 외관상 드러나는 부분을 관찰하기도 하고
환자에게 상태를 물어볼 수도 있습니다.
그것만으로 부족할 때는 검사를 할수도 있겠죠.
환자를 함수라고 생각해 볼까요.
만약 문제에서 함수의 식이 주어진다면
외관, 즉 식을 보고 대략적인 정보를 얻을 수 있어요.
이 함수는 다항함수구나, 대칭이구나 등등
그리고 문제에서 다른 성질이 주어졌는지 체크합니다.
함숫값이나 관계식 같은 조건을 수식으로 주기도 하고
연속이나 미분가능성 같은 것도 있구요.
그것만으로 정보가 부족할 때는 검사가 필요한데요.
검사라는 것은 함수를 해석하기 위한 도구들을 말합니다.
인수분해를 한다거나 식을 변형시키는 검사도 있고,
정밀 검사가 필요할 때는 미분을 해야 하는 것입니다.
미분이란 도함수를 구해서 함수의 변화에 대해서
더 자세히 알아보는 것을 말하니까요.
겉으로 보이지 않는 속까지 들여다 볼 수 있는
MRI검사 같은거라고 생각하면 되지요.
2. 검사가 능사는 아닙니다.
여러분은 물론 미분이라는 도구를 정확히 쓸 수 있도록
미분의 사용법을 잘 익혀두어야 합니다.
그렇지는 않겠지만 의사가 MRI검사를 직접해야 한다면
검사 도구의 각 기능을 아주 정확히 숙지하고 있어야겠죠.
결과지를 보고 해석할 능력 또한 필수이구요.
그러면 환자가 오면 일단 MRI부터 찍게 하는 의사를 생각해 볼까요.
그게 과연 효율적일까요? 효율을 떠나서
코로나 처럼 특정 바이러스를 콕 찝어내는 검사가 아니라면,
사전지식 없이 검사만 해서는 알 수 없는 것들도 많은데
환자 입장에서 신뢰하기가 힘들거에요.
반대로 지식과 경험이 많은 의사라면
환자의 상태를 종합적으로 판단해서 상태를 예측할 수 있을거에요.
그것이 100% 맞지는 않더라도, 그동안의 데이터와 경험을 통해
이런 상태의 환자라면 굳이 MRI를 찍지 않더라도
간단한 약처방만으로도 문제가 없을것이다, 라는 결론을 내릴수도 있죠.
3. 함수부터 잘 알아야 합니다.
미분을 잘하기 위해서 미분에 대해 정확히 아는 것은
물론 아주 중요합니다. 필수적인 전제겠죠.
그렇지만 미분이 함수의 해석 도구라는 것을 잊지 마세요.
의사에게 중요한 것은 도구보다도 인간인 것처럼
여러분에게는 미분보다 함수가 더 중요한 것입니다.
(그래서 함수를 잘 모르면 바보)
수능에서 다루는 함수의 종류가 그리 많지는 않습니다.
함수가 환자라고 생각하면, 희귀병 환자는 오지 않는다는 뜻이죠.
특히 수학2라고 치면 기껏해봐야, 감기환자, 장염환자 정도 될까요.
선택과목 미적분으로 가면 여러가지 합병증 환자가 등장해서
여러분을 골치아프게 만들기도 하겠지만요.
미분이 어렵거나 어느정도 실력이 있더라도 킬러가 안되는 학생은
대부분 함수의 성질에 대해서 디테일하게 알지 못합니다.
함수가 나오면 그때 그때 종합검사를 해야 하고 고민을 해야 하니까
문제를 푸는 시간도 오래 걸리고 시험장에서 어려움을 겪게 되죠.
요즘은 삼차함수에서 극점의 비율이 2:1이다 라는 것은
기억해서 쓰는 학생들의 비율도 많아진 것 같지만
사실 그런 것들은 함수가 가진 여러 가지 성질 중에서
아주 단편적인 한가지 성질일 뿐이에요.
함수의 그래프를 정확히 그리면 어떻게 되는지
접선은 어떤 성질을 갖는지, 넓이는 어떻게 되는지 등
여러가지 성질들을 알아야 할 것은 훨씬 많고
그것을 최대한 디테일하게 기억하는 것은
수능에서 미분을 쉽게 만드는데 큰 도움이 됩니다.
4. 암기는 중요합니다.
수학에서 암기의 중요성을 간과하는 경우가 많습니다.
의사가 감기 환자를 진료하면서, 그때그때 책을 찾아보거나
약 처방하나 하면서 포스트잇에 적힌 약의 이름을 보고 있다면?
환자가 말한 어떤 인체 부위의 이름을 정확히 모른다면?
그건 말이 안되겠죠.
수업시간에든 책에서든 배운것이 있다면 무조건 외워야 합니다.
환자에게 설명을 듣거나 책을 찾아보면 떠오르는 정도가 아니라
어떤 환자가 와서 목이 아파요, 라고 하게 되면
목 안의 상태를 힐끗 보고 나서, 목 안의 어떤 부위에
어떤 증상이 있고, 이걸 치료하기 위해서는 어떤 약이 필요하고...
어려운 전문용어라도 술술 나올 수 있어야 하겠죠.
듣고 이해되는 정도로 알고 있다고 착각하지 마세요.
설명도 못하는 의사가 제대로 알고 있다고 생각하지 않잖아요.
그렇다고 해서 공식노트처럼 좌악 적어놓고
외우기만 하면 문제가 해결된다고 생각하는 것은 아니겠지요?
공식만으로 해결이 된다면 의사라는 직업이 필요가 없겠죠.
문진표를 컴퓨터에 넣으면 공식에 의해 계산이 되어
치료방법이 나올 테니까요.
인간의 몸을 구성하는 요소를 분자레벨로 내려가보면
구성 요소들은 매우 단순한 것일지 모르겠지만
그것들이 조합된 인간이 그렇게 단순하지는 않잖아요?
마찬가지로,
문제에 있는 각 구성요소들은 여러분들이 다 알고 있지만
수능장에서 만나게 될 그 요소들의 조합은
여러분이 지금까지 한번도 본적이 없는
마치 변이 바이러스 같은 생소한 친구일 거에요.
따라서 단순 암기로는 해결할 수 없는 것이죠.
여러분은 앞으로 함수 전문 의사가 되기 위해서
정확한 암기에 의한 지식을 기반으로
종합적인 치료를 할 수 있는
추론능력과 문제해결능력 또한 키워야 하는 것입니다.
따라서 외우기만 할 것이 아니라 그렇게 되는 원리를
증명을 통해서 완벽하게 이해해야 합니다.
5. 문제만 많이 풀지 마세요.
다음주부터 개강하는 알고리즘-수학2 수업을 준비하면서
지난 수년간 학생들과 나누었던 대화를 돌이켜 보았어요.
함수 자체에 대한 개념이 부족했던 일부 학생을 제외하면
대부분 학생들은 함수의 성질만 잘 가르치고 암기하도록 해도
미분에 의한 함수추론 문제를 푸는 실력이 많이 늘었더군요.
킬러를 한번도 풀지 못했던 학생들이 수능에서 30번을 맞추기도 하구요.
문제는 대부분의 수학 교과서나 문제집, 심지어 많은 수능강좌도
미분이라는 기술 그 자체에 치우쳐 있고,
문제 풀이 위주의 학습을 시킨다는 것이지요.
물론 그게 완전히 틀렸다는 것은 아니에요.
미분이라는 기술을 알아야 함수에 대한 해석도 가능하니까요.
그리고 문제를 많이 풀다보면 익숙해지는 것도 사실이지요.
성질이 다른 삼차함수를 100개 정도 미분하면서 해석하다보면
정리를 잘하는 학생들이면 알아서 삼차함수에 대해서 깨우칠거에요.
수학은 문제만 많이 풀면 돼, 라는 것은
그러한 관점에서 나오는 얘기인 것 같습니다.
대부분의 학생은 그렇게 깨우치지 못해요.
기술을 배우고 문제를 왕창 풀면서 공부를 하는 것은
마치 의대생에게 MRI와 환자 수백명을 주고
검사를 일일이 해보면서 인체의 신비에 대해서
깨우치라는 것과 다름없는 이야기입니다.
앞으로 여러분들은 미분을 공부할 때,
나는 지금 함수에 대해서 알아가는 과정이다,
라는 것을 인식하면서 공부했으면 합니다.
문제를 풀더라도, 여러분이 만나게 되는 함수 하나하나를
잘 관찰하고 정리해 두세요.
그것이 여러분들에게 가장 중요한 임상 데이터 같은거니까요.
문제는 함수라는 것,
그것만 깨달아도 더이상 수학 바보는 아닐거에요.
아니, 충분히 1등급까지 올라갈 수 있습니다.
6. 수업 안내
다음주부터는 드디어 수학2가 시작됩니다.
저의 다른 모든 강좌들도 다 좋은 평가를 받아왔지만
수학2만큼은 작년까지 수많은 문과 학생들을
수학 바보에서 킬러를 풀 수 있는 상태까지 만든
저의 가장 핵심적인 강의 중 하나라고 자랑하고 싶네요.
<알고리즘-수학2>는 1월20일에 개강해서 수/금 주2회로
2주만에 기본 개념을 정리합니다.
빠르게 정리하고 선택과목하고 싶은 학생들에게 추천합니다.
수업은 대치오르비에서 진행되지만
코로나로 인한 집합 금지가 해제될지 확정되지 않아서
비대면 라이브로 진행될 가능성이 90%이상입니다.
자세한 안내는 아래 링크를 확인해 주세요.
[개념의 신세계 <알고리즘> 강좌안내}
[대치오르비 수강안내]
아래 두가지로 같이 해주세요.
1) 번호 : 01067050209 (궁금한 점은 이 번호로 문자주세요)
문자 : 학생명ㆍ이승효Tㆍ신청하는 수업 이름
2) 아래 링크를 통해서 해주세요.
https://forms.gle/dvtmzUmnJGRzz55f8
상담전화 02-3454-0207 (대치오르비)
궁금한 점은 댓글로 남겨 주세요~
날씨가 너무 추운데 다들 건강 잘 챙깁시다! ^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현강은 다 따라다니는 건가요 아니면 조교끼리 토일 수업 할게요 평일 수업 할게요 이런거 정함?
-
그냥 이감 푸나 바탕 푸나 서바 푸나 상상 푸나 한수 푸나 다 거기서 거기같은데...
-
확실히 6월9월 퀄리티랑 수능 퀄리티 차이도 꽤 나는듯
-
점메추좀 5
ㅇㅇ
-
브레턴 두문제 빼고 다 틀림 ㅅㅂㅋㅋㅋㅋㅋㅋㅋ 아 올해초에도 이랬는데 발전한게없네
-
경제글쓰고싶다 1
수많은 경제붕이들과 경제지문 혐오자들을 위한...
-
반대하는 이유가?ㅋㅋ
-
사문 조교좀 하고 싶긴 한데.
-
자아분열이 되...
-
수1,2를 하려 하는데요 수상하가 제대로 안돼있으면 안된다 들어서 이번에 복습할...
-
제가 머리 쓰면서 문제풀면 많이 더워하는 채질이라… 수능볼때 탁상형 선풍기 반입 가능하나요??
-
히카 30회 2
확통 80점인데 예상등급 4등급이라는데 이게 맞나요…? 나름 29회 92엿는데 4등급이라니
-
=/ 실수전체에서 연속이죠? 좌극한 우극한만 달라도 정의만되어있으면 되는거니
-
0101010101010101010011 경제 + "그 비율" 이거 두개만 아니면...
-
띵학모 모려고 듣기 듣는데 첫 20초 기타가 너무 좋아서 못넘어가겠어
-
오카네 카세구 0
와타시와 스탑스탑스탑
-
ㅈㅁㅇ ㄱ ㄴㅇ
-
전 35분 확보해야 다 푸는듯..
-
가즈아아
-
음 혜화내음. 2
성뱃으로.
-
이거리얼임 제앞에 지금 흑인 아조시들잇어요
-
두각 학원 환불 0
올해 25 수능을 치는데 혹시나의 재수 가능성을 염두에 두고 내년 두각 현강을...
-
한번호로 밀면 몇개는 맞겠지.. 문학 화작 정확도는 높은데 시간이 너무 걸려서...
-
진짜 뒤통수 플스윙 마렵게하네
-
확통사탐vs 미적과탐
-
신고 먹고 블라될수도 있는데 개빡쳐서 글씀 아니 모의고사 보고나서 성적 분석표...
-
무조건 경제지문인건가
-
몸살 0
수능 6일전인데 몸살난거같은데 날씨때문에 그런건 같지는 않고 막바지로 다가오니깐...
-
러셀 김강민t 현강 들으신분 어떤가요 혹시
-
아직도 충격적인게 아는 지인 삼수하고 경북대 간호? 거기 갔는데 진짜 무슨 죄...
-
87점 맞았어요. 근데 전 평가원도 ㅅ엄청 쉽게 나온거 아닌이상 많이 어렵든, 조금...
-
확실히 저게 문제였나보네 환율의가치가 좀 비직관적이라고하면 그럴수있긴함 대부분...
-
강아지같어ㅏ
-
또 나는 나의 모든 걸 어떻게 할 수가 없었어...
-
재수생
-
물론 수능은 미적칠거임
-
아 진짜 국어 좆됏네 ㅋㅋㅋㅋ 어케 삼수를하는데 현역때보다 퇴화하지
-
오밐추 3
사츠키 신곡 저녁 7시에 최초공개 같이 볼 오부이 구함
-
사문 개념 4
모든 하위문화는 주류문화에 의해 일탈로 규정될 수 있다 O X
-
히터좀 꺼주세요
-
정도가 지나쳐져서 이제 머리가 농담으로 절여졌는데 우짬>???
-
잘가><
-
윷놀이식 1루 ㄱㅈㅇ
-
수능날엔 내가 무조건 이긴다 이겨낸다
-
같은 김밥집만 일주일에 5번 가는데 이상하게 볼까
-
너무너무 좋은 하루다!!!!
-
군.캉스 5
에서 점심을 허.버허.버 먹었어요
-
아니꼬왔건게 과탐에서 개쳐맞다가 사탐런가서 존나 쉬운데? 과탐 왜 함 이지랄하면서...
-
오후는 수학만 파야겠다..
-
이제 삼수는 팀 아니긴 한데...
문제는
재수능이 중독인줄 모르고
인생낭비하는 제 인생이죠
제
발
그
만
해
공감합니다... 물론 세로요..
여기서 이러지 마세요
죄송합니다. 자중하겠습니다.
공부하면서 무의식적으로 들었던 생각들을 엄청 잘 설명해주신 거 같아요. 전 특히 4번에 공감이 되네요. 물론 외우는게 능사는 아니겠지만 공부하면서 마주치는 함수들의 뼈대?가 되는 기본적인 함수들은 다 외웠던게 도움이 많이 됐던거 같네요 ㅎㅎ 이제 입시판을 떠나지만 제가 올해 수능 준비를 다시한다면 선생님 수업을 듣고싶네요 ㅋㅋ
경험에서 나온 좋은 댓글 감사합니다
바보 바보 바보천치!
지나가던 문과생임미다. 누가 바보라고 놀리길래 헐레벌떡 뛰어왔습니다. 쒸익....쒸익....
허허 화이팅입니다!
쌤 칼럼 종종 올라오는 거 보면서 도움 많이 받고잇어요 감사합니당!!
그래요~ 정확합니다. 이차함수가 미분이 필요없는 이유는 미분없이도 성질을 파악할수 있기 때문이죠.
딱보자마자 빌클린턴 캐치프레이즈 떠올렸는데
역시 배우신 분
그걸 알아보다니 역시 배우신분. 근데 클린턴을 아는 수험생이 있을줄이야..!
저야 이젠 수험생이 아니니까요....ㅋㅋㅋㅋㅋ
설컴아재 글부터 굉장히 잘 읽고 있는
전직 4수생입니다...
역시 짬에서 나오는 바이브.... 전직 수험생이 된걸 정말 축하합니다! ㅎㅎ
바보아닌데
어라 찐 어피셜님이시네요. 반갑습니다 선생님. 좋은 댓글도 감사합니다~ ^^
아름다운 시작 - 함수는 총 몇강으로 구성되어있는지 알 수 있을까요?
쪽지로 답변드렸습니다~