극한문제 질문투척 ㅠㅠ
함수 y=2x^2의 그래프위의점 p(t,2t^2)에대하여 점p를지나고 직선op와 수직인직선이 y축과만나는점의 y좌표를 f(t)라하자. 점P가 y=2x^2의 그래프를따라 원점에 한없이가까워질때
f(t)의값은 어떤값에한없이가까워지는가?.
이문제에서요 점p가 원점이랑 거의 동일해지면 원점과p를지나는선 그리고 op와수직인선이 거의 x축과y축이랑 비슷해져서 사실상 f(t)의값은 무한대가되지않나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나머지 한 번호로 싹다 미는게 나을까요? 작년에 찍특봤다가 답만 다 피해가서...
-
ㅇㅇ
-
법치주의 질문좀 0
법치주의 = 법률에 구속됨인데 헌법에 구속되는건 실질적 법치주의 뿐임? 글고 형 실...
-
ㅇㅇ
-
공부 좀 하라고 7
욕박아줘요
-
우걱우걱
-
현장에서 벽느꼈던 문제 10
3~4등급 현역이한테 이문제는 그냥 재앙이였어요.. 지금보면 별거아닌데 그때 충격이...
-
5000부 판매돌파 지구과학 30분의기적 파이널 역전 총정리집을 소개합니다. (현재...
-
수학 실모 실수 0
왜이렇게 많지.. 3점짜리는 정확하게 풀어야겠다.. 4점짜리도 맞다고 생각한 게 왜 틀렷을깡...
-
나도 남잔데 여자 빌런보다 남자 빌런이 더 많은 것 같음 성별 갈등 일으키는 건 아닌데
-
사수생 3개년 기출=현장응시 모음집
-
마지막 인사. 5
아 돈 워너 비 윗아윳 유 걸 마지막인사는 접어두길바래 오늘 단하루맠큼
-
시발
-
노베 재수 1
예체능을 흐다 그만둬서 내년에 재수예정인 고3인데 다들 계획이 단단하던데.. 각...
-
기출 안 본지 좀 돼서 22 수능 국어 시간 재고 봤는데 6
70분 좀 안 돼서 다 풀고 88인데 나 기출 한 거 맞나
-
어라이상하네 6
분명성적표첨부를체크했는데왜아무것도안뜨지
-
8수생 고민좀요 4
아는 8수생이야긴데 작년에 쓴 수능시계가 고장나서 시대인재바닥에서 주운걸로 썼는데...
-
6,9모 모두 4년 중 커하인데 그 어떤 때보다 올수가 가장 두렵고 무서움 그리고...
-
기억나는 수능 빌런 16
4교시 끝났는데 갑자기 제1감독관이 뒷사람이 일어나서 OMR 걷어오세요~ 이럼...
-
뽑기운레전드 0
그야 내가 다 샀으니까
-
[2025수능예측] CH(2) EBS 수1 연계가능 문항 (압축&압축) 3
마지막 주말 남은기간 긍정적인 자세로 끝까지 최선을 다하시면 꼭 좋은결과...
-
자꾸풀다가도 잡생각이자꾸나고 집중할려해도 그게쉽지가않아요 ... 전에는이정도는 아니었던거같은데
-
레전드 동평 ㅋㅋ 13
이거보고 동국대 가기로 했다
-
예지몽 아니겠지 7
수능 보는 꿈 꿨는데 국어시간에 집중이 하나도 안됨 독서 언매 몇문제 넘기면서...
-
진짜 ㅈㄴ 불편해 보이는데
-
제가 너무 빨리 보는 것도 같은데...긴장되어서 넘기면 하나도 기억 안 나요 일단...
-
아 손에 종이 베임 29
아야 피 철철 남..
-
독-1개 문-5개 문학 진짜 죽이고싶네
-
오늘 점심 6
포켓먼빵
-
어려운거 맞나요? 라이프니츠 나오고 일원론 이원론 충전기 고전시가에서 개 나오는 그...
-
ㅆㅂㅅㅂㅅㅂ 마지막 회차에서 드디어 커하로 95를 뚫음
-
프사 냅다바꾸기 4
켄카네키 오레키호타로 오카룽 레츠고
-
괜찮은가요 ??
-
생명1 검더텅 1회독 수특수완한번씩 풀엇고 비유전은 ㄱㅊ긴한데 그래도 기출 한 번...
-
모의고사 국어 백분위 94-96 수학 백분위 94-96 영어 3-4등급(가끔 턱걸이...
-
아예 없나...작년에 저격먹었으니
-
오늘이 벌써 2
수능 전 마지막 주말이다 오르비언들 올해 다같이 수능 존나 부시고오자
-
본인 그래서 예전에 심지어 화1 서바도 번개장터에서 현강러한테 원본 택배 받아서 풂...
-
수능이 4일 남았다는건 17
07이 현역 되기까지도 4일 남았다는것 시간 왤케빠름
-
서바 17회 쉬웠던 것 같은데 88..
-
정당이 구성원의 이익보다 공익 중시해요??
-
굉장히 빡빡함
-
https://orbi.kr/00069395759/%5B%EC%A0%95%EC%B9%...
-
방금 서바 27회 풀었는데 72떠서 멘탈 개나감
-
지구 화석 1
현생누대에서 살던 생물 중에 여태까지 살아있는게 식물들 말고 또 뭐가 있어요?...
-
오리비티콘 이거 22
꽃다발인줄 알았는데 심장이였음..
-
후하후하
-
수특 연계라 엄청 쉽게 풀었는데 다들 어렵다고 하네요 저만 가 나 14번이랑 법지문...
-
강이분 독서3 내용 읽어보기만하고 수특 문제는 풀지 말까요? 시간이 얼마 없네요.
1/4나오는데요 op와 수직인선의 기울기가 거의 -무한대가 되는듯
1/2아닌가요???
F(t)=2t^2+1/4같은데
그렇게 어림짐작하지 말고 직접 f(t)를 구하세요.
어림짐작이아니라 이유가궁금해서요.. 제생각엔 무한대같은데 왜 값을갖게되는지..
OP와 수직인 선이 기울기가 계속 커지는 건 맞는데, P의 x좌표와 y좌표 또한 감소하고 있습니다. 그래서 f(t)가 발산한다고 단정하기엔 좀 그렇죠..;; 만약 t=0이 되었다고 했을 때 op와 수직인 선이 y축에 근접한다고 생각하면 y축 위의 모든 점이 그 선과 만나겠죠.
이 링크는 t=0.0001일 때 OP와 수직인 선을 나타내는 것입니다.
http://www.wolframalpha.com/input/?i=plot+y-2%280.0001%29%5E2%3D-5000%28x-0.0001%29
그래프까지..ㅠ감사합니다 이해해보려고 노력하게ㅐㅆ습니다!
아 그래프가 틀렸네요. 수정할때까지 기다려주세요.
수정했습니다.
질문자님의 의도에 맞는 답변을 드린다면
근사화의 직관으로 시도하신것 같은데
그 직관의 어디에 결함이 있는지 짚어보면
p 의 좌표가 원점으로 다가간다는것은 직선의 직선의 y절편이
작아지는데에 힘을 실어주는 요소이고
직선이 op와 수직이라는 점은 직선의 y절편이
커지는데에 힘을 실어주는 요소입니다.
이 두요소가 서로 경쟁하여 값이 0으로 수렴할지
무한대로 발산할지 0이아닌 상수로 수렴할지 결정되는 겁니다.
질문자 님께서는 수직이라는 점에만 초점을 맞추어서 직선이
벌떡~! 하고 일어서니까 무한대로 간다고 상상했는데
이것은 p가 0으로 다가감으로 주는 y절편의 감소효과를 간과한것이므로
잘못된것입니다.
물론 이문제를 직관으로도 오차없이 잘~ 째려보면
1/2 로 수렴함을 알수있습니다.
(힌트:원의성질+곡률반지름)
여기서 드리고 싶은 중요한 말이 있습니다.
직관적으로 푸는것 물론 좋습니다.
그러나 본인의 실력이 충분하지 않다면 직관적인 근사화로 푸는것은
상당히 위험합니다. 실력이 충분치 못하다면 그 직관에 중대한 오류가 있을수있는데
그것을 간과하게되면 ㅃ ㅇ ~ 인거죠
따라서 일단 정석적으로 푸ㅡㄴ 방법을 확실히 마스터 하시고
여유가 된다면 그때 그런방법을 연구하세요.
또 , 근사화를통한 직관이 본인스스로생각하기에 그다지
날카롭게 다듬어져있지 않다면 그냥 근사화를 포기하시고
정석으로 푸시는겁니다.
이 문제와 비슷한문제로써 포물선안에서 움직이는p점이있고 그 점을 지나는 원을그려서 반지름의극한을찾는문제였는데요 전 그문제에서도 p가 o에거의근접하면 반지름이0이될줄알았거든요 근데 과외선생님께서 아무리o에근접해도 곡률때문에 어느정도이하로는 작아질수없다고하더라구요.. 그부분에대해서 설명을좀해주시긴했는데 자세히들어가면 한참들어가야되서 설명해도모른다고하시더라구요ㅠㅠ 전 왜그렇게될수밖에없는지에대한 이유들이 자꾸 궁금한데 그런건 대학수학시간에배우나요? 아니면 공대나 수학과를가야 배울수있ㄱ는건지ㅠㅠ
거기에서도 곡률반지름에 대한 이해가 있으면 직관적으로도 구할수있습니다.
이문제는 지름의 길이가 답이고 님이 댓글에 다신 문제는
반지름이 답인데요.
곡률반지름이라는건 쉽게 풀어 설명하면 어떤 곡선의 특정한 점의위치에서의 곡선과 똑같은 곡률(꺾인정도)를
갖는 원의 반지름의 길이를 말하는 건데 , 이것은 대학교 과정이기는 하나
고등학교과정에서 배운것 만으로도 본인스스로 뼈를 깎는 고민을 해본다면 이와관련된
식을 유도해 낼수 있습니다. 실제로 제가 가르쳐본 학생중에 제가 논제를 툭 던져주고
약간의 힌트를 준다음 내버려둬 봤더니 끝끝내 혼자서 깨닫고 정리해내는 녀석이 있더라구요
이런 궁금증은 수학공부에 큰힘이 됩니다. 좋은 자세예요.
허나........ 님의 현재 실력이 여유있는 전국 상위 성적이 아니라면
어느정도까지에서 궁금함을 살짝접고 일단 기본고교과정에만 충실할 필요가 있습니다.
일종의 지적여유라고 할까요?
성적이 충분히 최상위이고 여유가 된다면 고민해볼만 합니다.
하지만 그렇지 않다면 급한불부터 끄시는게...(내신 및 수능 성적 을위한 공부.....)
정 궁금 하시면 제가 힌트를 드릴테니 고민해보셔도 좋습니다.
단, 추천하지는 않습니다.
제가 괜히 한 수험생의 시간을 잡아먹는 나쁜짓을 하게되지는 않을까 걱정입니다.
좋은 궁금증이고 수학시력향상에는 분명히 도움이 되지만... 시간제한이라는
입시생들의 벽 때문에...