3차함수 문제 풀어보세요~^^
작년에 직전모의고사에서 통계를 해보니 정답률 약 60%였습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
밸런스게임 0
ㄱㄱ
-
KBL 보는사람 0
볼만한가요? NBA 가끔 봤는데 성에 안 차려나
-
서강대 질받 0
아무거나ㄱ
-
기균 2명 뽑고 14명 지원. 7명 점공 중 2등 1등과 점수 차이는 크고...
-
신체나이마저 개딸리노
-
지는 사람이 햄버거 쏘기
-
수린씨가멀햇는데 1
이러심들
-
뻥축이라 더 템포가 빠름
-
뭔가 머리랑 눈 안 쪽이 퀭한 느낌
-
내릴게요..
-
사실 04임 1
틀딱은 아닌걸로ㅇㅇ
-
붕신같음!!! 하 곧 뜬다
-
게이리그보는 애들 있냐 12
국내축구 은근 재밌음 개막하면 보러가야지
-
벌써 3시네요 0
생활패턴 망가져서 큰일이에요... 평일이니 다시 일찍 일어나야할텐데
-
3모 대결하실분 7
서울대식으로 ㄱㄱ
-
언미생지 백분위 96 87 2 84 77 이고 제가 지방살아서 현재 시대라이브를...
-
킬러 문제 3
으흐흐
-
가즈아
-
저도 사실 04년생아님 11
아가현역임
-
처음에 옯스타 맞팔인줄 알고 댓 달았는데 본계를 주심 근데 그냥 검색해보니까 실제로...
-
최초합하면 외대 국통 뒤도 안돌아보고 바로 버리고 등록해야겠다
-
실검이 엉덩이네 10
아이고
-
쥬지 ㅇㅈ 3
왜 클릭?
-
평소에 수학 문제 풀 때 고난도 문제에서 핵심이 되는 개념은 잘 이용이 되는데 정작...
-
역시6수는드문가
-
스나 붙으면 수능을 또 안보게 됨
-
혈육이 내 위로 8살 5살 많아서 어려움이 없어요
-
사실인가요? 러셀 다니는중인데 수학쌤 피셜임 올해가 기회일 수 있으니 열심히 공부하라고
-
현역 6모 한판해요 13
메타는 처음 타봐서 어떻게 하는건진 모르겠지만... 6모 전체 오답 개수로 배틀하실...
-
다들 굿밤 9
ㅂ.ㅂ
-
난 치킨
-
1. 재밋다 2. 개념량이 적다 3. 멋지다
-
남자 헤어스타일 솔직히 12
이런게 섹시하고 좋은듯… 응…
-
그렇지만 지금이라도…. 응…. 경제적으로는 자유주의를 사회문화적으로는 리버럴을 선호하는 편이애오….
-
나도 나이맞히기 해볼래 39
-
특히 새벽5,6시 조회수가 말이 안됨 막 1-2분만에 200 넘기고..
-
다른 문제집으로 하고 있는데 지금이라도 같이 병행하려 합니다 2-3주 정도 잡고...
-
흐흐흐
-
석 나가네 15킬 암베사를 어케잡노
-
버스 한가득
-
심심하네 13
방정리 언제하지..
-
이런거이런거
-
독서만 공략하면 국어도 괜찮다 이건데
-
적은 것 같음..수요도 타지역보다 적은거같고 고3때 과외구하려고 김과외 볼때 부산대...
-
인스타 맞팔할 사람 12
ㅠㅠ친구해주셈 댓남기면 쪽지드릴게염
-
진짜 나이 맞혀볼게 57
-
국어 공부 올해 고3돼서 처음함 김동욱 커리 타는데 뭔가 문학 좀 부족한 거 같아서...
-
뭐 죄다 비슷하게생겼어 이런 펌 있잖아
3번인가요??
정답입니다.^^
근데 저 궁금한게 저 ㄷ을 구할 때요.. f(x)=x^3-x^2-x+1이 나오는데 이 식에서는 f(1)=0인데 'f(1)<0이면' 될려면 x축을 위로 올리는 건가요?? 그래서 f(x)가 전형적인 삼차함수의 개형인데 근이 2개인 곳에서 x축을 위로 올리면 근이 3개일 수도 1개일 수도 있어서 그런 건가요??
ㄷ선지의 핵심을 잘 짚어내셨네요. 함수 f(x)를 들어 올리면 1,2,3개의 근을 모두 가질수 있기때문에 틀린 것인데
올바른 풀이는
ㄱ.에서 f(1)=f(-1)이죠? 그러고, f '(1)=0입니다. 따라서 f(x)=(x-1)^2(x+1)+a(단, a는 실수)
라고 놓고 상수 a의 값의 변화에 따라서 ㄷ선지를 해석하면 됩니다.
3번인가요?
정답입니다.^^
좋은문제 감사합니다 ^^
33
정답입니다^^
2번인가요? 낚인거 같은데 뭔지 모르겠네요
오답입니다. 함수의 극한에 대해서 좀 더 생각해보시길 바랍니다.^^
으악 잘못썼네요.
1번인가요......?
으악..ㅠㅠ 오답이에요.. ㄱ은 함수의 극한에 관한 선지. ㄴ, ㄷ은 삼차함수에 관한 선지입니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
3번요 ㅋㅋ f(x) = (x-1)^2(x+1)+f(1) 나오네요 ㅋ
정답입니다. 모범답안입니다.^^
1번?..
아 제 수학 좀 해야겠다.....
오답입니다.^^;;
조건에서 f 프라임 1이 0이라는거 말고 얻어낼 수 있는게 뭔가요 ㅠㅠ?
그게 있어야 풀릴거같은데 ㅠㅠ
ㄱ조건에 모두 답이 있습니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다
3번??
정답입니다^^
수리 캐허접인데 풀어보니 3번나오는데, 틀렸죠?
맞았어요 ^^
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수)
임을 이용해서 풀었다면 모범답안입니다.
f(x)=(x-1)^2(x+1)+k 로 하긴 했는데
첨에 f(x)=(x-1)(x+1)(x-a)+k 로 놓고 미분후 1대입해서야
a가 1임을 알아내서..
웬만한 분들은 걍 f '(1)=0 보고 바로 식 나오시는듯 하군요 ㅠㅠ
님처럼 푸신분들도 많아요^^;; 앞으로 잘알아두시고 써먹으시면 되는거에요 ㅎㅎ
계산 안하고 바로 생각해내는 사고 과정좀 알려주실수 있나요
ㄷ 풀때 그래프를 그려보면서 뒤늦게 자동으로 알게 되긴 하지만요..
삼차함수에서 도함수의 함수값이 0이라는것은 극솟값 혹은 극댓값을 의미합니다. 그 극값을 k라고 합시다. 그러면, f(1)=k, f(-1)=k 이죠? 즉 f(1)의 값과 f(-1)의 값이 같다는걸 유추할수 있습니다.
그럼 가장 쉬운 예로 k=0이라고 칩시다. 그러면 함수 f(x)에서 f(1)의 값은 x축에 접한 형태가 될것 입니다. 그리고, f(1)은 극값이므로 중근을 갖겠네요. 따라서 f(x)=(x-1)^2(x+1) 라고 유추할수 있습니다.
*) 왜 x축에 접하는 극값이 중근을 갖느냐?
2차 함수 y=(x-1)^2을 생각해보시길 바랍니다.
흠냐 답 ㄱ,ㄴ인가요?
정답입니다.^^
이과 문제로 내기에는 넘 쉬운것 같고 문과 문제로 내면 딱이겠네요~ ㅎㅎ
그래서 작년 SHC모의고사 (나)형에 출제됬던 문제입니다.^^;;
5번
오답입니다.^^
4번? 맞으면 ㄴ이 왜 틀린지 설명좀 해주실수 있을까요?
정답은 ㄱ,ㄴ이구요
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
5번 맞나요
오답입니다^^;;
ㅠㅠ 힌트까지 주셨는데 개형 못찾았네요.. ㅠㅠ
중근 형태인지 극점 두개 인지 어떻게 판별하죠 ?...
중근형태인지 판별이라..
이런것입니다. 어떤 삼차함수 f(x)가 x=0에서 극솟값 1을 갖는다고 가정합시다.
그러면 함수 f(x)-1은 x=0에서 x축에 닿는 형태가 되겠지요?
이렇게 "닿는 형태"(느슨하게 말하여) 일때 중근이라고 유추할수 있습니다. (수학적으로 엄밀한 것이 아닙니다. 수능에는 이렇게 생각하면 상관없습니다.)
만약 x=0에서 그래프가 x축을 아래에서 위로 혹은 위에서 아래로 뚫고 올라갔다고 칩시다. 그러면 삼차함수 f(x)-1=x(ax^2+bx+c)로 방정식을 쓸수 있습니다. 물론, f(x)-1=x^3일수도 있구요.
*) 여기서 중요한 것. "닿는 형태" -> 2차, 4차 등의 짝수차항 다항식을 포함
ex) f(x)=x^2(x-2)^2
"뚫고 지나가는 형태" -> 1차, 3차 등의 홀수차항 다항식
ex) f(x)=x(x-1)^3
보통 수능은 3차, 심해봤자 4차함수가 나오는 점을 감안하시구... 왜 그런가 궁금하면 직접 그래프를 그려보세요.(네이버에 그래프 그리는 프로그램 쳐서 나오는것 하나 받아서 수식 입력하세요)
극점 2개인 것은 판별한다기 보단, 위에서 방정식을 만들어서 그래프를 그리다보면 자연스럽게 알수 있는 부분입니다. 다로 팁을 드리기가 애매하네요잉...
3번맞나요 ? 귓방망이님 책출간언제하시나용?ㅠ
아직 인쇄중입니다. 생각보다 오래걸리네요ㅠㅠ 기다려주신만큼 좋은 문제질로 보답하겠습니다^^
3번 맞나요??
정답입니다.^^
5번이 아닌가요? 그럼... 3번인가보네요...
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
ㄷ이 조금만 생각을 더했으면 1,2개 였을수도 있다는 생각을 못했네요 ㅋ 문제질 좋으시네요!
분수식의 극한이 극한값을 가진다는 사실에서 분모가 0으로 수렴하므로 분자도 0으로 수렴합니다.
따라서 ㄱ은 옳은 보기입니다.
또한 로피탈의 정리에 의해 f`(1)=0이고 f(x)는 삼차항의 계수가 1인 삼차함수이므로 보기 ㄱ과 함께 정리하면
f(x)=x^3-x^2-x+c입니다. (단, c는 임의의 상수)
따라서 ㄴ도 옳은 보기입니다.
그리고 f(x)는 x=-1/3일 때 극댓값을 가지므로 f(-1/3)=c+5/27로
f(x)가 세 개의 실근을 가질 조건은 c>-5/27입니다. 따라서 ㄷ은 틀린 보기가 됩니다.
그러므로 정답은 3번 ㄱ,ㄴ이 됩니다.
답은 3번!!
3번인가요??